2 resultados para platinum-rhodium alloy

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodium-catalyzed asymmetric hydroboration in conjunction with directing groups can be used control relative and absolute stereochemistry. Hydroboration has the potential to create new C–C, C–O, and C–N bonds from an intermediate C–B bond with retention of stereochemistry. Desymmetrization resulting in the loss of one or more symmetry elements can give rise to molecular chirality, i.e., the conversion of a prochiral molecule to one that is chiral. Unsaturated amides and esters hold the potential for two-point binding to the rhodium catalyst and have been shown to direct the regiochemistry and impact stereochemistry in asymmetric hydroborations of acyclic β,γ-unsaturated substrates. In the present study, the pendant amide functionality directs the hydroboration cis in the cyclic substrates studied; the corresponding ester substrates do so to a lesser extent. The enantioselectivity is determined by regioselective addition to the re or si site of the rhodium-complexed alkene. The effect of catalyst, ligand and borane on the observed diastereoselectivity and enantioselectivity for a variety of cyclopentenyl ester and amide substrates is discussed.