2 resultados para physiological control

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.