3 resultados para performaceoptimazation soft error

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

You published recently (Nature 374, 587; 1995) a report headed "Error re-opens 'scientific' whaling debate". The error in question, however, relates to commercial whaling, not to scientific whaling. Although Norway cites science as a basis for the way in which it sets its own quota. scientific whaling means something quite different. namely killing whales for research purposes. Any member of the International Whaling Commission (IWC) has the right to conduct a research catch under the International Convention for the Regulation of Whaling. 1946. The IWC has reviewed new research or scientific whaling programs for Japan and Norway since the IWC moratorium on commercial whaling began in 1986. In every case, the IWC advised Japan and Norway to reconsider the lethal aspects of their research programs. Last year, however, Norway started a commercial hunt in combination with its scientific catch, despite the IWC moratorium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This panel session explores how the dynamics of race and gender within university settings influence Asian women’s experiences in graduate psychology programs.