2 resultados para passenger trains
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
During autumn 2003, several thousand European starlings (Sturnus vulgaris) began roosting on exposed I-beams in a newly constructed, decorative glass canopy that covered the passenger pick-up area at the terminal building for Cleveland Hopkins International Airport, Ohio. The use of lethal control or conventional dispersal techniques, such as pyrotechnics and fire hoses, were not feasible in the airport terminal area. The design and aesthetics of the structure precluded the use of netting and other exclusion materials. In January 2004, an attempt was made to disperse the birds using recorded predator and distress calls broadcast from speakers installed in the structure. This technique failed to disperse the birds. In February 2004, we developed a technique using compressed air to physically and audibly harass the birds. We used a trailer-mounted commercial air compressor producing 185 cubic feet per minute of air at 100 pounds per square inch pressure and a 20-foot long, 1-inch diameter PVC pipe attached to the outlet hose. One person slowly (< 5 mph) drove a pick-up truck through the airport terminal at dusk while the second person sat on a bench in the truck bed and directed the compressed air from the pipe into the canopy to harass starlings attempting to enter the roost site. After 5 consecutive nights of compressed-air harassment, virtually no starlings attempted to roost in the canopy. Once familiar with the physical effects of the compressed air, the birds dispersed at the sound of the air. Only occasional harassment at dusk was needed through the remainder of the winter to keep the canopy free of starlings. Similar harassment with the compressor was conducted successfully in autumn 2004 with the addition of a modified leaf blower, wooden clappers, and laser. In conclusion, we found compressed air to be a safe, unobtrusive, and effective method for dispersing starlings from an urban roost site. This technique would likely be applicable for other urban-roosting species such as crows, house sparrows, and blackbirds.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.