4 resultados para optical phase conjugation

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer and telecommunication networks are changing the world dramatically and will continue to do so in the foreseeable future. The Internet, primarily based on packet switches, provides very flexible data services such as e-mail and access to the World Wide Web. The Internet is a variable-delay, variable- bandwidth network that provides no guarantee on quality of service (QoS) in its initial phase. New services are being added to the pure data delivery framework of yesterday. Such high demands on capacity could lead to a “bandwidth crunch” at the core wide-area network, resulting in degradation of service quality. Fortunately, technological innovations have emerged which can provide relief to the end user to overcome the Internet’s well-known delay and bandwidth limitations. At the physical layer, a major overhaul of existing networks has been envisaged from electronic media (e.g., twisted pair and cable) to optical fibers - in wide-area, metropolitan-area, and even local-area settings. In order to exploit the immense bandwidth potential of optical fiber, interesting multiplexing techniques have been developed over the years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Routing and wavelength assignment (RWA) is an important problem that arises in wavelength division multiplexed (WDM) optical networks. Previous studies have solved many variations of this problem under the assumption of perfect conditions regarding the power of a signal. In this paper, we investigate this problem while allowing for degradation of routed signals by components such as taps, multiplexers, and fiber links. We assume that optical amplifiers are preplaced. We investigate the problem of routing the maximum number of connections while maintaining proper power levels. The problem is formulated as a mixed-integer nonlinear program and two-phase hybrid solution approaches employing two different heuristics are developed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.