2 resultados para multivariate approximation
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.
Resumo:
Regression coefficients specify the partial effect of a regressor on the dependent variable. Sometimes the bivariate or limited multivariate relationship of that regressor variable with the dependent variable is known from population-level data. We show here that such population- level data can be used to reduce variance and bias about estimates of those regression coefficients from sample survey data. The method of constrained MLE is used to achieve these improvements. Its statistical properties are first described. The method constrains the weighted sum of all the covariate-specific associations (partial effects) of the regressors on the dependent variable to equal the overall association of one or more regressors, where the latter is known exactly from the population data. We refer to those regressors whose bivariate or limited multivariate relationships with the dependent variable are constrained by population data as being ‘‘directly constrained.’’ Our study investigates the improvements in the estimation of directly constrained variables as well as the improvements in the estimation of other regressor variables that may be correlated with the directly constrained variables, and thus ‘‘indirectly constrained’’ by the population data. The example application is to the marital fertility of black versus white women. The difference between white and black women’s rates of marital fertility, available from population-level data, gives the overall association of race with fertility. We show that the constrained MLE technique both provides a far more powerful statistical test of the partial effect of being black and purges the test of a bias that would otherwise distort the estimated magnitude of this effect. We find only trivial reductions, however, in the standard errors of the parameters for indirectly constrained regressors.