3 resultados para mucosal swabs
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The objective of this study was to develop a suitable experimental model of natural Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus), describe the distribution and character of tuberculous lesions, and to examine possible routes of disease transmission. In October 1997, 10 mature female white-tailed deer were inoculated by intratonsilar instillation of 2 3 103 (low dose) or 2 3 105 (high dose) colony forming units (CFU) of M. bovis. In January 1998, deer were euthanatized, examined, and tissues were collected 84 to 87 days post inoculation. Possible routes of disease transmission were evaluated by culture of nasal, oral, tonsilar, and rectal swabs at various times during the study. Gross and microscopic lesions consistent with tuberculosis were most commonly seen in medial retropharyngeal lymph nodes and lung in both dosage groups. Other tissues containing tuberculous lesions included tonsil, trachea, liver, and kidney as well as lateral retropharyngeal, mandibular, parotid, tracheobronchial, mediastinal, hepatic, mesenteric, superficial cervical, and iliac lymph nodes. Mycobacterium bovis was isolated from tonsilar swabs from 8 of 9 deer from both dosage groups at least once 14 to 87 days after inoculation. Mycobacterium bovis was isolated from oral swabs 63 and 80 days after inoculation from one of three deer in the low dose group and none of four deer in the high dose group. Similarly, M. bovis was isolated from nasal swabs 80 and 85 days after inoculation in one of three deer from the low dose group and 63 and 80 days after inoculation from two of four deer in the high dose group. Intratonsilar inoculation with M. bovis results in lesions similar to those seen in naturally infected white-tailed deer; therefore, it represents a suitable model of natural infection. These results also indicate that M. bovis persists in tonsilar crypts for prolonged periods and can be shed in saliva and nasal secretions. These infected fluids represent a likely route of disease transmission to other animals or humans.
Resumo:
To compare the pathogenesis of human genotype 1 (HuGl) and bovine genotype 2 (BoG2) Cryptosporidium parvum, neonatal gnotobiotic pigs were given 1-10 HuGl or BoG2 oocysts. The prepatent and patent periods were significantly longer for HuGl than for BoG2 C. parvum (prepatent, 8.6 vs. 5.6 days; patent, 16.6 vs. 10.3 days). BoG2-infected pigs developed signif- icantly more severe disease than did HuGl-infected pigs. BoG2 parasites were seen micro- scopically throughout the intestines during the prepatent and patent periods. HuGl parasites were only detected during the patent period in the ileum and colon but colonized the mucosal surface in significantly larger numbers than did BoG2. Moderate-to-severe villus/mucosal attenuation with lymphoid hyperplasia was seen throughout the intestines of BoG2-infected pigs, whereas lesions in HuGl-infected pigs were mild to moderate and restricted to the ileum and colon. These findings provide additional support for the hypothesis that human and bovine C. parvum genotypes may be separate species.
Resumo:
Several wildlife species have tested positive for bovine tuberculosis in Michigan and may potentially transmit the disease to other animals. Coyotes have the highest known prevalence in the endemic area and thus, our objective was to investigate the shedding of Mycobacterium bovis by coyotes. Four coyotes were orally inoculated with 1 ml of 1 x 105 CFU/ml of M. bovis. Oral and nasal swabs, and feces were collected regularly and tested by culture. Fecal samples were also tested by exposing guinea pigs to the coyotes' feces. All animals were necropsied to determine if infection occurred. All swabs, feces and tissues were negative on culture. The dosage of M. bovis given to these coyotes was considered biologically relevant, but was insufficient for causing infection. Due to the lack of infection, we still do not know the risk coyotes pose for shedding M. bovis.