22 resultados para mammal, draon, taotie
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents stock assessments for 13 Pacific marine mammal stocks under NMFS jurisdiction, including 8 “strategic” stocks and 5 “non-strategic” stocks (see summary table). A new stock assessment for humpback whales in American Samoa waters is included in the Pacific reports for the first time. New or revised abundance estimates are available for 9 stocks, including Eastern North Pacific blue whales, American Samoa humpback whales, five U.S. west coast harbor porpoise stocks, the Hawaiian monk seal, and southern resident killer whales. A change in the abundance estimate of Eastern North Pacific blue whales reflects a recommendation from the Pacific Scientific Review Group to utilize mark-recapture estimates for this population, which provide a better estimate of total population size than the average of recent line-transect and mark-recapture estimates. The ‘Northern Oregon/Washington Coast Stock’ harbor porpoise stock assessment includes a name change (‘Oregon’ is appended to ‘Northern Oregon’) to reflect recent stock boundary changes. Changes in abundance estimates for the two stocks of harbor porpoise that occur in Oregon waters are the result of these boundary changes, and do not reflect biological changes in the populations. Updated information on the three stocks of false killer whales in Hawaiian waters is also included in these reports. Information on the remaining 50 Pacific region stocks will be reprinted without revision in the final 2009 reports and currently appears in the 2008 reports (Carretta et al. 2009). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center (NWFSC, Seattle, WA). Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. National Marine Mammal Laboratory staff prepared the Northern Oregon/Washington coast harbor porpoise stock assessment. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for 9 stocks. The stock assessment for the American Samoa humpback whale was prepared by staff from the Center for Coastal Studies, Hawaiian Islands Humpback National Marine Sanctuary, the Smithsonian Institution, and the Southwest Fisheries Science Center. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the November 2008, Maui meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer to and cite original literature sources rather than citing this report or previous Stock Assessment Reports. If the original sources are not accessible, the citation should follow the format: [Original source], as cited in [this Stock Assessment Report citation].
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act, the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) were required to produce stock assessment reports for all marine mammal stocks in waters within the U.S. Exclusive Economic Zone. This document contains the stock assessment reports for the U.S. Pacific marine mammal stocks under NMFS jurisdiction. Marine mammal species which are under the management jurisdiction of the USFWS are not included in this report. A separate report containing background, guidelines for preparation, and .a summary of all stock assessment reports is available from the NMFS Office of Protected Resources. This report was prepared by staff of the Southwest Fisheries Science Center, NMFS and the Alaska Fisheries Science Center, NMFS. The information presented here was compiled primarily from published sources, but additional unpublished information was included where it contributed to the assessments. The authors wish to thanks the members of the Pacific Scientific Review Group for their valuable contributions and constructive criticism: Hannah Bernard, Robin Brown, Mark Fraker, Doyle Hanan, John Heyning, Steve Jeffries, Katherine Ralls, Michael Scott, and Terry Wright. Their comments greatly improved the quality of these reports, We also thanks the Marine Mammal Commission, The Humane Society of the United States, The Marine Mammal Center, The Center for Marine Conservation, and Friends of the Sea Otter for their careful reviews and thoughtful comments. Special thanks to Paul Wade of the Office of Protected Resources for his exhaustive review and comments, which greatly enhanced the consistency and technical quality of the reports. Any ommissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information becomes available and as changes to marine mammal stocks and fisheries occur; therefore, each stock assessment report is intended to be a stand alone document. The authors solicit any new information or comments which would improve future stock assessment reports. This is Southwest Fisheries Science Center Technical Memorandum NOAA-TM-NMFS-SWFSC- 219, July 1995. 111
Resumo:
A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler’s (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).
Resumo:
Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling’s removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.
Resumo:
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analyzed data from the Steller’s sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA(mtDNA) and microsatellite data sets,we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei’s gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.
Resumo:
Table of Contents: Least Bell’s Vireos Are Back, page 3 San Joaquin River National Wildlife Refuge hosted totally unexpected residents last year. Managing Ocean Wildlife, page 5 A new agreement should help in managing marine resources. Focus on . . . Endangered Species, pages 10-21 Whether it’s the fastest land mammal or the tiniest mussel, refuges work on behalf of endangered species. Peeping at Peeps, page 24 Shorebirds can be tough to identify. Classroom and fields trips helped.
Resumo:
The complexities involved in obtaining permits for field research using protected species continue to increase. In October 1988, Congress amended the Marine Mammal Protection Act (MMPA) to increase the documentation required to obtain a scientific research permit (PL 100-711). Applicants for scientific research permits must now submit “information indicating that the taking is required to further a bona fide scientific purpose and does not involve unnecessary duplication of research.”
Resumo:
Juveniles of Contracaecum multipapillatum infected the Mayan cichlid (Cichlasoma urophthalmus) and adults infected the olivaceous cormorant (Phalacrocorax olivaceus) and the great egret (Casmerodius albus) in the coastal lagoon at Celestun, State of Yucatan, Mexico. All are new host records, and, even though the geographic locality record of Mexico for the species has not been published, unidentified but presumably conspecific specimens have been reported from there. When juveniles of C. multipapillatum were fed to a kitten, but not rats, ducks, or chickens, they developed into adults. Measurements and morphological data are provided on the specimens from the kitten. Development of an avian ascaridoid in the intestine of a mammal increases the potential of this widespread species to infect other mammals, including humans.
Resumo:
Gray whales are coastal migratory baleen whales that are benthic feeders. Most of their feeding takes place in the northern Pacific Ocean with opportunistic feeding taking place during their migrations and residence on the breeding grounds. The concentrations of organochlorines and trace elements were determined in tissues and stomach contents of juvenile gray whales that were taken on their Arctic feeding grounds in the western Bering Sea during a Russian subsistence harvest. These concentrations were compared to previously published data for contaminants in gray whales that stranded along the west coast of the US during their northbound migration. Feeding in coastal waters during their migrations may present a risk of exposure to toxic chemicals in some regions. The mean concentration (standard error of the mean, SEM) of Σ PCBs [1400 (130) ng/g, lipid weight] in the blubber of juvenile subsistence whales was significantly lower than the mean level [27 000 (11 000) ng/g, lipid weight] reported previously in juvenile gray whales that stranded in waters off the west coast of the US. Aluminum in stomach contents of the subsistence whales was high compared to other marine mammal species, which is consistent with the ingestion of sediment during feeding. Furthermore, the concentrations of potentially toxic chemicals in tissues were relatively low when compared to the concentrations in tissues of other marine mammals feeding at higher trophic levels. These chemical contaminant data for the subsistence gray whales substantially increase the information available for presumably healthy animals.
Resumo:
A workshop on the assessment of Indo-Pacific bottlenose dolphins (Tursiops aduncus), with the Solomon Islands as a case study, took place from 21-23 August 2008 in Apia, Samoa. It was planned and organized under the auspices of the Cetacean Specialist Group and attended by 19 invited participants from eight countries. Financial support was provided by WWF (International), The Ocean Conservancy, Animal Welfare Institute, Humane Society of the United States, Whale and Dolphin Conservation Society, U.S. Marine Mammal Commission and U.S. National Oceanic and Atmospheric Administration. The workshop was hosted by the Secretariat of the Pacific Regional Environment Program (SPREP). Live-capture, holding in captivity and export of Indo-Pacific bottlenose dolphins from the Solomon Islands began in 2003. These activities stimulated global interest and generated concern about the potential conservation implications. The IUCN Global Plan of Action for the Conservation of Cetaceans had stated that as a general principle, small cetaceans should not be captured or removed from a wild population unless that specific population has been assessed and shown capable of sustaining the removals. A principal goal of the present workshop was to elaborate on the elements of an assessment that would meet this standard. Participants noted that an assessment involving delineation of stock boundaries, abundance, reproductive potential, mortality and trend cannot necessarily be achieved quickly or inexpensively.
Resumo:
Morishita’s “multiple analysis”of the whaling issue [Morishita J. Multiple analysis of the whaling issue: Understanding the dispute by a matrix. Marine Policy 2006;30:802–8] is essentially a restatement of the Government of Japan’s whaling policy, which confuses the issue through selective use of data, unsubstantiated facts, and the vilification of opposing perspectives. Here, we deconstruct the major problems with Morishita’s article and provide an alternative view of the whaling dispute. For many people in this debate, the issue is not that some whales are not abundant, but that the whaling industry cannot be trusted to regulate itself or to honestly assess the status of potentially exploitable populations. This suspicion has its origin in Japan’s poor use of science, its often implausible stock assessments, its insistence that culling is an appropriate way to manage marine mammal populations, and its relatively recent falsification of whaling and fisheries catch data combined with a refusal to accept true transparency in catch and market monitoring. Japanese policy on whaling cannot be viewed in isolation, but is part of a larger framework involving a perceived right to secure unlimited access to global marine resources. Whaling is inextricably tied to the international fisheries agreements on which Japan is strongly dependent; thus, concessions made at the IWC would have potentially serious ramifications in other fora.
Resumo:
Although four new species of whale have been identified since 1937, the absence of new ones for the past 28 years might be taken to mean that they had finally all been dis- covered. Not so - a new species of beaked whale, Mesoplodonperuvianus, is described by J. C. Reyes and colleagues in the latest issue of Marine Mammal Science.
Resumo:
Studying the sociobiology and behavioral ecology of cetaceans is particularly challenging due in large part to the aquatic environment in which they live. Nevertheless, many of the obstacles traditionally associated with data gathering on tree-ranging whales, dolphins and porpoises are rapidly being overcome, and are now far less formidable. During the past several decades, marine mammal scientists equipped with innovative research methods and new technologies have taken field-based behavioral studies to a new level of sophistication. In some cases, as is true for bottlenose dolphins, killer whales, sperm whales and humpback whales, modern research paradigms in the marine environment are comparable to present-day studies of terrestrial mammal social systems. Cetacean Society stands testament to the relatively recent advances in marine mammal science, and to those scientists, past and present, whose diligence has been instrumental in shaping the discipline.
Resumo:
The mammal fauna of arctic Alaska is comprised of about thirty species, most of which are widely distributed. A few of these are essentially nearctic species, having extended their range northwestward during post-Pleistocene time. The majority, however, consists of forms which are either circumboreal in their distribution, or which have closely-related palearctic counterparts-considered specifically distinct hy most North American mammalogists. Sorne of the foremost Old World workers, however, do not agree that Bering Strait constitutes a barrier which effectively separates the Old World fauna from the New.
Resumo:
Trichinosis in the arctic regions of the world has received considerable attention during recent years, particularly since the work of Roth (1948) in Greenland. In Connell's (1949) review of arctic trichinosis some Alaskan and Canadian records were included but, until now, little has been known of the status of the disease in Alaska. Information available at the present time indicates that the incidence of trichinosis is high in circumpolar carnivores and that marine mammals have a definite place in its epizootiology. Present knowledge cannot explain the survival of trichinosis in marine mammal populations, but it is evident that they may serve as important sources of human infection. Up to the present time the following mammals from Alaska have been found to be infected: From the arctic coast-polar bear, Thalarctas maritimus; arctic fox, Alapex lagapus irmuitus; red fox, Vulpes fulva alascemis; white whale, Delphinapterus leucas; Eskimo dog. From south of the Brooks Range--brown and grizzly bears, Ursus spp.; wolf, Canis lupus ssp.; wolverine. Gula l. luscus. At the time of writing, nearly ail species of land carnivores in Alaska have been examined as well as many other mammalian species less likely to be infected, including various rodents, shrews, and others.