6 resultados para lineal row feet per acre

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This extension circular is a slide rule used to help a producer calculate the row spacing, seed population, and estimated percentage of emergence of sugarbeet. A producer can also use this slide rule to find the plant population from plants/100 feet of row at 22" and 30" row spacings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigation is vital to the economic activity of the west-central Great Plains. The crops grown, the distribution of center-pivot irrigation systems, and the basic transportation infrastructure is the same in northwest Kansas, northeast Colorado, and southwest Nebraska. But buyers of agricultural land face a different price for irrigated cropland in each of the states, even when the production characteristics of the land are similar. After accounting for factors like productivity and local property tax differences, we argue that it is the difference in water marketing rights between the three states that explains the price difference. The link between land values and water marketing rights is statistically developed by using Ordinary Least Squared (OLS) regression techniques. After adjusting for differences in property taxes, the analysis reveals that the implicit value of full water-marketing rights in the region is approximately $1,026 per acre. This valuation is within the range of estimates provided by other comparable studies across the country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During autumn 2003, several thousand European starlings (Sturnus vulgaris) began roosting on exposed I-beams in a newly constructed, decorative glass canopy that covered the passenger pick-up area at the terminal building for Cleveland Hopkins International Airport, Ohio. The use of lethal control or conventional dispersal techniques, such as pyrotechnics and fire hoses, were not feasible in the airport terminal area. The design and aesthetics of the structure precluded the use of netting and other exclusion materials. In January 2004, an attempt was made to disperse the birds using recorded predator and distress calls broadcast from speakers installed in the structure. This technique failed to disperse the birds. In February 2004, we developed a technique using compressed air to physically and audibly harass the birds. We used a trailer-mounted commercial air compressor producing 185 cubic feet per minute of air at 100 pounds per square inch pressure and a 20-foot long, 1-inch diameter PVC pipe attached to the outlet hose. One person slowly (< 5 mph) drove a pick-up truck through the airport terminal at dusk while the second person sat on a bench in the truck bed and directed the compressed air from the pipe into the canopy to harass starlings attempting to enter the roost site. After 5 consecutive nights of compressed-air harassment, virtually no starlings attempted to roost in the canopy. Once familiar with the physical effects of the compressed air, the birds dispersed at the sound of the air. Only occasional harassment at dusk was needed through the remainder of the winter to keep the canopy free of starlings. Similar harassment with the compressor was conducted successfully in autumn 2004 with the addition of a modified leaf blower, wooden clappers, and laser. In conclusion, we found compressed air to be a safe, unobtrusive, and effective method for dispersing starlings from an urban roost site. This technique would likely be applicable for other urban-roosting species such as crows, house sparrows, and blackbirds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After several years of successively rising land values and cash rents, Nebraska’s farmland markets throttled back during 2008. Preliminary results from the University of Nebraska-Lincoln’s 2009 Nebraska Farm Real Estate Market Survey show a clear picture of the market mood turning very cautious in response to the U.S. and global economic downturns. As of February 1, 2009, the weighted average value of Nebraska farmland was $1,424 per acre, identical to the year-earlier level (Figure 1 and Table 1 at end of article). Likewise, estimated 2009 cash rents are stable to slightly down from 2008 levels throughout most of the state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Arkansas, blackbirds are responsible for appreciable damage to rice, grain sorghum, oats, wheat, rye, and corn. By far, the greatest damage is to rice. As is shown in the following table, the losses to rice producers amounted to an estimated $3,049,055 in 1968, the last year that a survey was made. Nearly two-thirds (63%) of this loss was to standing rice destroyed and to the cost of bird control measure in standing rice. The remaining losses ($2,140,320 ) are to seeding or to efforts to control bird depredations to new seeding, (see Table 1). Blackbird damage to grain sorghum and corn was mostly to standing grain; that to oats, wheat and rye, to seeding, although there is occasional damage to standing grain. Additional problems are caused by blackbirds in feed lots. The total losses to Arkansas agricultural producers due to blackbirds in 1968 was about $3,500,000. Bird damage in a specific locality and on specific crops seems to vary in intensity from year to year. However, surveys during the past ten years suggest a fairly consistent level of total damage state-wide. The damage in 1968-and I believe in 1969—was somewhat lighter than we have come to expect from past exper¬ience. (See table 2.) On a per acre basis the damage in 1968 showed a considerable decline when compared to previous years. A part of this decline is probably a temporary situation. Some of the decline in losses to rice and grain sorghum, however, are due to changes in varieties, such as development of bird-resistant milo, and to changes in cultural methods. Further appreciable reductions due to changes in these factors seem unlikely, (see table 3.) Since rice producers sustain the greatest losses to birds, they have generated the greatest demand for bird control programs. Three species are responsible for most of the damage to rice. They are the red-winged blackbird, common grackle and brown-headed cowbird. These birds have created problems for rice producers since the first successful rice crop was grown near Lonoke, Arkansas, in 1904.