4 resultados para grid-based spatial data

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most authors struggle to pick a title that adequately conveys all of the material covered in a book. When I first saw Applied Spatial Data Analysis with R, I expected a review of spatial statistical models and their applications in packages (libraries) from the CRAN site of R. The authors’ title is not misleading, but I was very pleasantly surprised by how deep the word “applied” is here. The first half of the book essentially covers how R handles spatial data. To some statisticians this may be boring. Do you want, or need, to know the difference between S3 and S4 classes, how spatial objects in R are organized, and how various methods work on the spatial objects? A few years ago I would have said “no,” especially to the “want” part. Just let me slap my EXCEL spreadsheet into R and run some spatial functions on it. Unfortunately, the world is not so simple, and ultimately we want to minimize effort to get all of our spatial analyses accomplished. The first half of this book certainly convinced me that some extra effort in organizing my data into certain spatial class structures makes the analysis easier and less subject to mistakes. I also admit that I found it very interesting and I learned a lot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler’s (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overabundance of white-tailed deer (Odocoileus virginianus) continues to challenge wildlife professionals nationwide, especially in urban settings. Moreover, wildlife managers often lack general site-specific information on deer movements, survival, and reproduction that are critical for management planning. We conducted radio-telemetry research concurrent with deer culling in forest preserves in northeastern Illinois and used empirical data to construct predictive population models. We culled 2,826 deer from 16 forest preserves in DuPage County (1992-1999) including 1,736 from the 10 km2 Waterfall Glen Forest Preserve. We also radio-marked 129 deer from 8 preserves in DuPage and adjacent Cook County (1994-1998). Recruitment was inversely associated with deer density suggesting a classic density-dependent response. Female deer were philopatric and 20% of adult males dispersed. Survival was high for all sex and age classes, and deer-vehicle collisions accounted for >55% of known mortalities. Based upon data from other areas, early attempts to apply population models to deer at Waterfall Glen Forest Preserve were not useful. The subsequent quantification of the density-dependent recruitment response and use of other empirical data strengthened the predictive capability of models. Our experience illustrates the importance of understanding demographics of overabundant deer in order to set realistic objectives and make sound management decisions.