2 resultados para giant conifer aphids

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Native to Africa, Gambian giant pouched rats (Gambian rats; Cricetomys gambianus Waterh.) are a threatening invasive species on a Florida island, Grassy Key. Gambian giant pouched rats shifted from a domestic pet to invading species after suspected release from a pet breeder. Because of the large size of Gambian rats (weighing up to 2.8 kg), they pose a serious threat to native species (particularly nesting species) and agricultural crops, especially if Gambian rats invade mainland Florida. Also, Gambian rats pose a threat from disease, as they were implicated in a monkeypox outbreak in the mid-western United States in 2003. The United States Department of Agriculture’s Wildlife Services has initiated eradication and detection efforts in the Florida Keys, but trapping the sparse population of Gambian rats has proven difficult. RESULTS: Fifteen attractants that could be used in traps for capturing or detecting single or paired Gambian rats were tested. It was found that conspecific scents (i.e. feces and urine) from other Gambian rats were the best treatment for attracting single and paired Gambian rats. Single Gambian rats explored more attractant types than paired Gambian rats. CONCLUSIONS: Effective attractants for use with Gambian rats have been identified, and multiple attractant types should be used to capture or detect the sparse population. It is recommended that mainly urine and feces from Gambian rats be used, but peanut butter, anise, ginger and fatty acid scent could also be useful for attracting the currently small population of Gambian rats on Grassy Key.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.