3 resultados para generalized additive model

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abundance of harbor seals (Phoca vitulina richardii) has declined in recent decades at several Alaska locations. The causes of these declines are unknown, but there is concern about the status of the populations, especially in the Gulf of Alaska. To assess the status of harbor seals in the Gulf of Alaska, we conducted aerial surveys of seals on their haul-out sites in August-September 1996. Many factors influence the propensity of seals to haul out, including tides, weather, time of day, and time of year. Because these “covariates” cannot simultaneously be controlled through survey design, we used a regression model to adjust the counts to an estimate of the number of seals that would have been ashore during a hypothetical survey conducted under ideal conditions for hauling out. The regression, a generalized additive model, not only provided an adjustment for the covariates, but also confirmed the nature and shape of the covariate effects on haul-out behavior. The number of seals hauled out was greatest at the beginning of the surveys (mid-August). There was a broad daily peak from about 1100-1400 local solar time. The greatest numbers were hauled out at low tide on terrestrial sites. Tidal state made little difference in the numbers hauled out on glacial ice, where the area available to seals did not fluctuate with the tide. Adjusting the survey counts to the ideal state for each covariate produced an estimate of 30,035 seals, about 1.8 times the total of the unadjusted counts (16,355 seals). To the adjusted count, we applied a correction factor of 1.198 from a separate study of two haul-out sites elsewhere in Alaska, to produce a total abundance estimate of 35,981 (SE 1,833). This estimate accounts both for the effect of covariates on survey counts and for the proportion of seals that remained in the water even under ideal conditions for hauling out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.