3 resultados para flow system

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The October 1998 flood on the upper Guadalupe River system was produced by a 24-hour precipitation amount of 483 mm at one station, over 380 mm at several other stations, and up to 590 mm over five days, precipitation amounts greater than the 100-year storm as prescribed in Weather Bureau Technical Papers 40 (1961) and 49 (1964). This study uses slope-area discharge estimates and published discharge and precipitation data to analyze flow characteristics of the three major branches of the Guadalupe River on the Edwards Plateau. The main channel of the Guadalupe has a single large flood-control structure at Canyon Dam and five flood dams on the tributary Comal River. On the upper San Marcos River there are five detention dams that regulate 80% of its drainage. The Blanco River, which has no structural controls, generated a peak discharge of 2,970 m3/s from a 1,067 km2 basin. Downstream of Canyon Dam, the Guadalupe River generated a peak discharge greater than 3,000 m3/s from an area of 223 km2. The event exceeded the capacity of both the Comal River and San Marcos flood-control projects and produced spills that inundated areas greater than the 100-year floodplain defined by the Federal Emergency Management Agency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.