2 resultados para fixed speed induction generator

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Starting induction motors on isolated or weak systems is a highly dynamic process that can cause motor and load damage as well as electrical network fluctuations. Mechanical damage is associated with the high starting current drawn by a ramping induction motor. In order to compensate the load increase, the voltage of the electrical system decreases. Different starting methods can be applied to the electrical system to reduce these and other starting method issues. The purpose of this thesis is to build accurate and usable simulation models that can aid the designer in making the choice of an appropriate motor starting method. The specific case addressed is the situation where a diesel-generator set is used as the electrical supplied source to the induction motor. The most commonly used starting methods equivalent models are simulated and compared to each other. The main contributions of this thesis is that motor dynamic impedance is continuously calculated and fed back to the generator model to simulate the coupling of the electrical system. The comparative analysis given by the simulations has shown reasonably similar characteristics to other comparative studies. The diesel-generator and induction motor simulations have shown good results, and can adequately demonstrate the dynamics for testing and comparing the starting methods. Further work is suggested to refine the equivalent impedance presented in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One problem with using component-based software development approach is that once software modules are reused over generations of products, they form legacy structures that can be challenging to understand, making validating these systems difficult. Therefore, tools and methodologies that enable engineers to see interactions of these software modules will enhance their ability to make these software systems more dependable. To address this need, we propose SimSight, a framework to capture dynamic call graphs in Simics, a widely adopted commercial full-system simulator. Simics is a software system that simulates complete computer systems. Thus, it performs nearly identical tasks to a real system but at a much lower speed while providing greater execution observability. We have implemented SimSight to generate dynamic call graphs of statically and dynamically linked functions in x86/Linux environment. A case study illustrates how we can use SimSight to identify sources of software errors. We then evaluate its performance using 12 integer programs from SPEC CPU2006 benchmark suite.