3 resultados para finite square well potential
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs.
Resumo:
Iptakalim is a novel putative adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener. In the brain, iptakalim is thought to act on the neuronal and astrocytic plasma membrane and/or mitochondrial KATP channels. Because iptakalim demonstrates an action on the regulation of dopamine and glutamate release in the forebrain regions, we examined its potential antipsychotic efficacy in several preclinical tests. First, we show that iptakalim is effective in reducing amphetamine- and phencyclidine-induced hyperlocomotion as well as selectively disrupting conditioned avoidance responding. Next, we show that combined iptakalim and amphetamine treatment produces a reduction on prepulse inhibition of acoustic startle and this combined drug effect is also found with haloperidol, but not with clozapine. Finally, we show that iptakalim and clozapine preferentially increase c-Fos expression in the medial prefrontal cortex, nucleus accumbens and lateral septal nucleus, whereas haloperidol induces a greater increase in the nucleus accumbens, the dorsolateral striatum and lateral septal nucleus. Collectively, our findings indicate that iptakalim is likely to be a potential antipsychotic drug with distinct mechanisms of action. This study also suggests that neuronal and astrocytic plasma membrane and/or mitochondrial KATP channels may be a novel target that deserves attention for antipsychotic drug development. Future research using other sensitive tests is needed to confirm this property of iptakalim.
Resumo:
Abstract Yellowstone National Park is located over a hot spot under the North American tectonic plate and holds a potentially explosive super-volcano that has the ability to cause deadly consequences on the North American continent. After an eruption the surrounding region would see the greatest devastation, covered by pyroclastic deposits and thick ash fall exterminating most all life and destroying all structures in its path. In landscapes of greater distance from the event the consequences will be less dramatic yet still substantial. Records of previous eruption data from the Yellowstone super-volcano show that the ash fall out from the eruption can cover areas as large as one million square kilometers and could leave Nebraska covered in ash up to 10 centimeters thick. This would cause destruction of agriculture, extensive damage to structures, decreased temperatures, and potential respiratory hazards. The effects of volcanic ash on the human respiratory system have been shown to cause acute symptoms from heavy exposure. Symptoms include nasal irritation, throat irritation, coughing, and if preexisting conditions are present some can develop bronchial symptoms, which can last for a few days. People with bronchitis and asthma are shown to experience airway irritation and uncomfortable breathing. In most occurrences, exposure of volcanic ash is too short to cause long-term health hazards. Wearing facial protection can alleviate much of the symptoms. Most of the long-term ramifications of the eruption will be from the atmospheric changes caused from disruption of solar radiation, which will affect much of the global population. The most pertinent concerns for Nebraska citizens are from the accumulation of ash deposits over the landscape and the climatic perturbations. Potential mitigation procedures are essential to prepare our essentially unaware population of the threat that they may soon face if the volcano continues on its eruption cycle.