3 resultados para field-in-field photon planning
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
ABSTRACT Riparian buffer zones are important sites of biodiversity, sediment trapping, pollutant removal, and hydrologic regulation that have significant implications for both people and wildlife. Urbanization’s influence on and need for adequate water quality increases the need for careful planning in regards to riparian areas. Wildlife are key components in the ecosystem functions of riparian zones and require consideration in peri-urban planning as well. This study reviews relevant literature to determine the recommended minimum riparian buffer width for maintaining water quality and habitat along Stevens Creek in Lincoln, Nebraska. Only sources that listed a specific purpose related to water quality and habitat for their buffer width recommendations were considered. The study found that the baseline buffer width recommended for Stevens Creek that would be adequate for both water quality maintenance and basic habitat is 50 ft (15 m) per side. This number may be modified based on other factors such as slope, soil particle size, adjacent land use, the presence of certain wildlife communities, stream size, and stream order.
Resumo:
Variable angle of incidence spectroscopic ellipsometry was used to determine the optical constants near the band edge of boron carbide (B5C) thin films deposited on glass and n-type Si(111) via plasma-enhanced chemical-vapor deposition. The index of refraction n, the extinction coefficient k, and the absorption coefficient are reported in the photon energy spectrum between 1.24 and 4 eV. Ellipsometry analysis of B5C films on silicon indicates a graded material, while the optical constants of B5C on glass are homogeneous. Line shape analyses of absorption data for the films on glass indicate an indirect transition at approximately 0.75 eV and a direct transition at about 1.5 eV. ©1996 American Institute of Physics.
Resumo:
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.