3 resultados para feasibility study
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.