1 resultado para false positive rates
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (73)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (25)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (19)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (43)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (21)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (50)
- Queensland University of Technology - ePrints Archive (365)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (54)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (14)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Static analysis tools report software defects that may or may not be detected by other verification methods. Two challenges complicating the adoption of these tools are spurious false positive warnings and legitimate warnings that are not acted on. This paper reports automated support to help address these challenges using logistic regression models that predict the foregoing types of warnings from signals in the warnings and implicated code. Because examining many potential signaling factors in large software development settings can be expensive, we use a screening methodology to quickly discard factors with low predictive power and cost-effectively build predictive models. Our empirical evaluation indicates that these models can achieve high accuracy in predicting accurate and actionable static analysis warnings, and suggests that the models are competitive with alternative models built without screening.