3 resultados para estimating function

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveys of commercial markets combined with molecular taxonomy (i.e. molecular monitoring) provide a means to detect products from illegal, unregulated and/or unreported (IUU) exploitation, including the sale of fisheries bycatch and wild meat (bushmeat). Capture-recapture analyses of market products using DNA profiling have the potential to estimate the total number of individuals entering the market. However, these analyses are not directly analogous to those of living individuals because a ‘market individual’ does not die suddenly but, instead, remains available for a time in decreasing quantities, rather like the exponential decay of a radioactive isotope. Here we use mitochondrial DNA (mtDNA) sequences and microsatellite genotypes to individually identify products from North Pacific minke whales (Balaenoptera acutorostrata ssp.) purchased in 12 surveys of markets in the Republic of (South) Korea from 1999 to 2003. By applying a novel capture-recapture model with a decay rate parameter to the 205 unique DNA profiles found among 289 products, we estimated that the total number of whales entering trade across the five-year survey period was 827 (SE, 164; CV, 0.20) and that the average ‘half-life’ of products from an individual whale on the market was 1.82 months (SE, 0.24; CV, 0.13). Our estimate of whales in trade (reflecting the true numbers killed) was significantly greater than the officially reported bycatch of 458 whales for this period. This unregulated exploitation has serious implications for the survival of this genetically distinct coastal population. Although our capture-recapture model was developed for specific application to the Korean whale-meat markets, the exponential decay function could be modified to improve the estimates of trade in other wildmeat or fisheries markets or abundance of living populations by noninvasive genotyping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The crabeater seal Lobodon carcinophaga is considered to be a key species in the krill-based food web of the Southern Ocean. Reliable estimates of the abundance of this species are necessary to allow the development of multispecies, predator–prey models as a basis for management of the krill fishery in the Southern Ocean. 2. A survey of crabeater seal abundance was undertaken in 1500 000 km2 of pack-ice off east Antarctica between longitudes 64–150° E during the austral summer of 1999/2000. Sighting surveys, using double observer line transect methods, were conducted from an icebreaker and two helicopters to estimate the density of seals hauled out on the ice in survey strips. Satellite-linked dive recorders were deployed on a sample of seals to estimate the probability of seals being hauled out on the ice at the times of day when sighting surveys were conducted. Model-based inference, involving fitting a density surface, was used to infer densities in the entire survey region from estimates in the surveyed areas. 3. Crabeater seal abundance was estimated to be between 0.7 and 1.4 million animals (with 95% confidence), with the most likely estimate slightly less than 1 million. 4. Synthesis and applications. The estimation of crabeater seal abundance in Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) management areas off east Antarctic where krill biomass has also been estimated recently provides the data necessary to begin extending from single-species to multispecies management of the krill fishery. Incorporation of all major sources of uncertainty allows a precautionary interpretation of crabeater abundance and demand for krill in keeping with CCAMLR’s precautionary approach to management. While this study focuses on the crabeater seal and management of living resources in the Southern Ocean, it has also led to technical and theoretical developments in survey methodology that have widespread potential application in ecological and resource management studies, and will contribute to a more fundamental understanding of the structure and function of the Southern Ocean ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.