6 resultados para eared bat
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Two of the five subspecies of the western big-eared bat, Corynorhinus townsendii, are listed as federally endangered with the remaining three being of conservation concern. Knowing the degree of connectivity among populations would aid in the establishment of sound conservation and management plans for this taxon. For this purpose, we have developed and characterized eight polymorphic microsatellite markers.
Resumo:
We developed and characterized 15 microsatellite markers for Rafinesque’s big-eared bat, Corynorhinus rafinesquii. In a population from Tennessee, the number of alleles per locus ranged from three to 13 and observed heterozygosities were 0.35 to 0.97 per locus. These loci will provide appropriate variability for estimation of population connectivity, demographic parameters, and genetic diversity for this species of concern.
Resumo:
Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.
Resumo:
Tick-borne relapsing fever in western North America is a zoonosis caused by spirochetes in the genus Borrelia that are transmitted by argasid ticks of the genus Ornithodoros (1). Human disease occurs in many focal areas and is associated with infections of Borrelia hermsii, B. turicatae, and possibly B. parkeri (2,3). Although the ecologic parameters that maintain B. hermsii and B. turicatae differ, human infections usually occur in rustic cabins (B. hermsii) and caves (B. turicatae) inhabited by ticks and their terrestrial vertebrate hosts (1). Recently, Gill et al. (4) provided evidence that the argasid bat tick, Carios kelleyi, feeds upon humans. Subsequently, Loftis et al. (5) used PCR analysis and DNA sequencing to detect in C. kelleyi an unidentifi ed Borrelia species that was closely related to B. turicatae and B. parkeri.
Resumo:
Plans and instructions for building a “Two-chamber Rocket Box” bat-house to accommodate large numbers (>200) of bats. See further: http://www.batcon.org/educatorsK/pdfs/fof_bathouse.pdf
Resumo:
Two new records of Tadarida brasiliensis mexicana are reported from Nebraska. The literature records of this taxon from the central United States are summarized. In this region of North America, these bats occupy a “natal range” where the species carries on regular reproductive activities and the populations are relatively stable, including California, Arizona, New Mexico, Texas, and Oklahoma. To the north of the natal range of T. b. mexicana is a “pioneering zone” where, under favorable conditions, the species is capable of reproducing and conducting its normal activities. The pioneering zone of the Mexican free-tailed bat includes Barber and Comanche counties in Kansas and as far north as Mesa and Saguache counties in southwestern Colorado. Finally, to the north of the pioneering zone, there is a much larger area that is proposed as the “exploring zone” in which only a few individuals of the species are found. Reproductive activities do not occur on any regular basis in the exploring zone, which encompasses the remainder of Colorado and Kansas as well as the states of Wyoming, Nebraska, Iowa, Illinois, Missouri, and southeastern South Dakota.