6 resultados para dynamic time warping (DTW)
em DigitalCommons@University of Nebraska - Lincoln
Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
Resumo:
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
In this paper, we propose a Loss Tolerant Reliable (LTR) data transport mechanism for dynamic Event Sensing (LTRES) in WSNs. In LTRES, a reliable event sensing requirement at the transport layer is dynamically determined by the sink. A distributed source rate adaptation mechanism is designed, incorporating a loss rate based lightweight congestion control mechanism, to regulate the data traffic injected into the network so that the reliability requirement can be satisfied. An equation based fair rate control algorithm is used to improve the fairness among the LTRES flows sharing the congestion path. The performance evaluations show that LTRES can provide LTR data transport service for multiple events with short convergence time, low lost rate and high overall bandwidth utilization.
Resumo:
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.