3 resultados para drift titania ceria ethanol
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
During the last decade, leaf tatters has been reported in white oak and hackberry across several Midwestern states. Herbicide spray drift studies have shown that chloroacetamides can induce leaf tatters. The objectives of this research were to: 1) identify vulnerable bud developmental stages in hackberry and 2) determine if different commercial chloroacetamides affect severity of leaf tatters. In 2008, a preliminary spray drift experiment was conducted on mature trees from a former hackberry provenance test stand. Acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook) were applied at concentrations approximating 27%, 54%, 81%, or 108% of the recommended field rate. Three developmental stages before bud burst were present on the selected trees. Leaf tatters did not develop on the selected hackberry trees. However, symptoms were observed on neighboring, non-target hackberry trees, which had been in the leaf unfolding and expanding stages at the time of spraying. In 2009, three year old hackberry seedlings were treated with 1%, 10%, and 100% of the recommended field rate of acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook). Folded buds and two unfolding leaf developmental stages were present on seedlings. Another spray study was conducted on 32 mature hackberry trees from the provenance stand. A solution of 5608 mg a.i./L dimethenamid (Outlook) was applied to trees in the unfolding and/or expanding leaf stage. Treated trees represented four provenances. Image analysis was used to calculate seedling and mature tree leaf areas and estimate the seedling percentage of leaf tissue loss. Foliar damage was not significantly different between seedlings treated with water, 1%, or 10% of the field rate. Foliar damage was significantly different between seedlings treated with 1% or 100% of the field rate, and between seedlings treated with 10% or 100% of the field rate. Foliar damage in seedlings was not significantly different between the developmental stages. Additionally, symptoms of leaf tatters were observed on the treated mature hackberry. Future studies should focus on chloroacetamide concentrations above 10% of the recommended field rate.
Resumo:
Abstract Ethanol is a biofuel that has unique capabilities to mitigate global climate change by reducing greenhouse gas emissions while simultaneously supporting rural economies and decreasing the United States’ dependence on foreign oil. Currently, the state of Nebraska depends on corn ethanol, which may be unsustainable. Cellulosic ethanol is a promising alternative but it is not without its problems, including high production costs and potential environmental damage. This thesis is an attempt to understand the benefits, downfalls, and processes of corn-based and cellulosic ethanol and the potential implications to Nebraska. This research should shed some light on the current obstacles and environmental problems involved with production, as well as evaluate the potential economic benefits to Nebraska, while pointing out issues that should be further researched before implementation.
Resumo:
If burning a gallon of ethanol emits less greenhouse gas or GHGs (CO2, primarily), than the gasoline it replaces then it has a smaller carbon footprint than gasoline. Actually, it is the amount of fossil CO2 emitted that matters, because CO2 from fossil fuels represents "new" carbon in the atmosphere, whereas the CO2 released by corn ethanol is recycled atmospheric carbon.