5 resultados para documents referred to in exhibit to affidavit

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical nonmicellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Concentration-dependent pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size, and ratio. The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of three species to the list is recommended based on recent literature. (Orcaella brevirostris) has been split into the Irrawaddy dolphin (O. brevirostris) and the Australian snubfin dolphin (O. heinsohni). Sotalia fluviatilis has been split into the riverine tucuxi (S. fluviatilis) and the marine "costero" (S. guianensis). Evidence to support both of these splits is convincing, and we recommend that they be recognized in the list. The existence of the Bryde's-whale-like species described in 2003 as Balaenoptera omurai has been confirmed with additional genetic (nuclear) data. While the species clearly exists, the nomenclature is still unsettled because the genetic identity of the holotype specimen of Balaenoptera edeni has not yet been determined. However, the name B. omurai is gaining wide usage in application to the new species, and we propose that it be used provisionally by the Scientific Committee pending the genetic identification of the B. edeni holotype. We recommend that India be urged to facilitate the identification. We recommend continued use of the name Balaenoptera edeni provisionally for both the "ordinary" large form and the small coastal form, recognizing that further genetic and morphological research may justify recognition of two species: B. brydei and B. edeni. We also recommend that any new specimen be referred to B. omurai only after its mtDNA has been sequenced and found to support the identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transparent (wide-area) wavelength-routed optical network may be constructed by using wavelength cross-connect switches connected together by fiber to form an arbitrary mesh structure. The network is accessed through electronic stations that are attached to some of these cross-connects. These wavelength cross-connect switches have the property that they may configure themselves into unspecified states. Each input port of a switch is always connected to some output port of the switch whether or not such a connection is required for the purpose of information transfer. Due to the presence of these unspecified states, there exists the possibility of setting up unintended alloptical cycles in the network (viz., a loop with no terminating electronics in it). If such a cycle contains amplifiers [e.g., Erbium- Doped Fiber Amplifiers (EDFA’s)], there exists the possibility that the net loop gain is greater than the net loop loss. The amplified spontaneous emission (ASE) noise from amplifiers can build up in such a feedback loop to saturate the amplifiers and result in oscillations of the ASE noise in the loop. Such all-optical cycles as defined above (and hereafter referred to as “white” cycles) must be eliminated from an optical network in order for the network to perform any useful operation. Furthermore, for the realistic case in which the wavelength cross-connects result in signal crosstalk, there is a possibility of having closed cycles with oscillating crosstalk signals. We examine algorithms that set up new transparent optical connections upon request while avoiding the creation of such cycles in the network. These algorithms attempt to find a route for a connection and then (in a post-processing fashion) configure switches such that white cycles that might get created would automatically get eliminated. In addition, our call-set-up algorithms can avoid the possibility of crosstalk cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.