1 resultado para distribution (probability theory)
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (228)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (31)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (61)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- Dalarna University College Electronic Archive (11)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (16)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (6)
- Glasgow Theses Service (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (12)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (12)
- Nottingham eTheses (5)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- Repositorio Institucional Universidad de Medellín (2)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (3)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (30)
- Université de Montréal (2)
- Université de Montréal, Canada (18)
- University of Connecticut - USA (1)
- University of Michigan (23)
- University of Queensland eSpace - Australia (169)
- University of Southampton, United Kingdom (6)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.