5 resultados para direct and indirect organogenesis

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades the management of large game mammals has become increasingly intensive in south central Spain (SCS), resulting in complex epidemiological scenarios for disease maintenance, and has probably impeded schemes to eradicate tuberculosis (TB) in domestic livestock. We conducted an analysis of risk factors which investigated associations between the pattern of tuberculosis-like lesions (TBL) in wild boar (Sus scrofa) and red deer (Cervus elaphus) across 19 hunting estates from SCS and an extensive set of variables related to game management, land use and habitat structure. The aggregation of wild boar at artificial watering sites was significantly associated with an increasing risk of detecting TBL in both species, which probably relates to enhanced opportunities for transmission. Aggregation of wild boar at feeding sites was also associated with increased risks of TBL in red deer. Hardwood Quercus spp. forest availability was marginally associated with an increased risk of TB in both species, whereas scrubland cover was associated with a reduced individual risk of TBL in the wild boar. It is concluded that management practices that encourage the aggregation of hosts, and some characteristics of Mediterranean habitats could increase the frequency and probability of both direct and indirect transmission of TB. These findings are of concern for both veterinary and public health authorities, and reveal tuberculosis itself as a potential limiting factor for the development and sustainability of such intensive game management systems in Spanish Mediterranean habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weddell seals (Leptonychotes weddellii Lesson) at White Island, Antarctica form a small, completely enclosed, natural population hypothesized to be of recent origin, likely founded by individuals from nearby Erebus Bay. This population constitutes an ideal model to document a founder event and ensuing genetic drift, with implications for conservation. Here we combined historical accounts, census and tagging data since the late 1960s, and genetic data (41 microsatellite loci and mitochondrial DNA sequences) from 84 individuals representing nearly all individuals present between 1990 and 2000 to investigate the history of the founding of the White Island population, document its population dynamics and evaluate possible future threats. We fully resolved parental relationships over three overlapping generations. Cytonuclear disequilibrium among the first generation suggested that it comprised the direct descendants of a founding group. We estimated that the White Island population was founded by a small group of individuals that accessed the island during a brief break in the surrounding sea ice in the mid-1950s, consistent with historical accounts. Direct and indirect methods of calculating effective population size were highly congruent and suggested a minimum founding group consisting of three females and two males. The White Island population showed altered reproductive dynamics compared to Erebus Bay, including highly skewed sex ratio, documented inbred mating events, and the oldest known reproducing Weddell seals. A comparison with the putative source population showed that the White Island population has an effective inbreeding coefficient (Fe) of 0.29. Based on a pedigree analysis including the hypothesized founding group, 86% of the individuals for whom parents were known had inbreeding coefficients ranging 0.09–0.31. This high level of inbreeding was correlated with reduced pup survival. Seals at White Island therefore face the combined effects of low genetic variability, lack of immigration, and inbreeding depression. Ultimately, this study provides evidence of the effects of natural isolation on a large, long-lived vertebrate and can provide clues to the potential effects of anthropogenic- caused isolation of similar taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the ability of experimentally inoculated white-tailed deer (Odocoileus virginianus) to transmit Mycobacterium bovis to naive deer through the sharing of feed, four deer were intratonsillarly inoculated with 4x105 colony-forming units of M. bovis. On a daily basis, feed not consumed by inoculated deer after approximately 8 hr was offered to four naıve deer maintained in a separate pen, where direct contact, aerosol transmission, or transmission through personnel were prevented. After 150 days, naıve deer were euthanized and examined. All naıve deer had lesions consistent with tuberculosis and M. bovis was isolated from various tissues. The most commonly affected tissues were lung, tracheobronchial lymph nodes, and mediastinal lymph nodes. This study demonstrates the potential for indirect transmission of M. bovis through the sharing of feed. Intentional or unintentional feeding of deer by wildlife or agricultural interests in regions where M. bovis infection is endemic should be avoided because both direct and indirect transmission through sharing of feed are enhanced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer. Animals—Twenty-three 6-month-old white-tailed deer. Procedure—On day 0, M bovis (2 X 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis. Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed. Conclusions and Clinical Relevance—Mycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis.