2 resultados para density model
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.
Resumo:
We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.