1 resultado para data analysis: algorithms and implementation
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (27)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (26)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (18)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (63)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (54)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (20)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (53)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (7)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (30)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (43)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Ecology and Society (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (17)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (61)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- Repositorio Institucional Universidad Católica de Colombia (1)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (13)
- Scientific Open-access Literature Archive and Repository (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (5)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (23)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (38)
- Université de Montréal, Canada (5)
- University of Michigan (84)
- University of Queensland eSpace - Australia (30)
- University of Southampton, United Kingdom (4)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
Most authors struggle to pick a title that adequately conveys all of the material covered in a book. When I first saw Applied Spatial Data Analysis with R, I expected a review of spatial statistical models and their applications in packages (libraries) from the CRAN site of R. The authors’ title is not misleading, but I was very pleasantly surprised by how deep the word “applied” is here. The first half of the book essentially covers how R handles spatial data. To some statisticians this may be boring. Do you want, or need, to know the difference between S3 and S4 classes, how spatial objects in R are organized, and how various methods work on the spatial objects? A few years ago I would have said “no,” especially to the “want” part. Just let me slap my EXCEL spreadsheet into R and run some spatial functions on it. Unfortunately, the world is not so simple, and ultimately we want to minimize effort to get all of our spatial analyses accomplished. The first half of this book certainly convinced me that some extra effort in organizing my data into certain spatial class structures makes the analysis easier and less subject to mistakes. I also admit that I found it very interesting and I learned a lot.