8 resultados para creep feeding
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Many farm flocks in Nebraska are comprised of aged western ewes. They are easily obtained because of the state's geographical position with reference to the sheep-producing sections of the West and the leading feeder lamb markets. Nebraska ranks second in number of western lambs fed. This also tends to acquaint farmers with range sheep. This 1930 research bulletin discusses factors in early lamb production; objects of the experiment, experimental procedure, and experimental data of raising early lambs from aged western ewes.
Resumo:
Varying economic conditions and changes in the demands of the meat consuming public have been responsible for the turns that have taken place in the beef industry during recent years. Both feeder and producer must recognize and conform to these changes if they are to continue in business. Among the most important of these changes have been the turn toward the marketing of lighter cattle and the gradual disappearance from feed lots of two- and three-year-old animals. Furthermore, the cattle population of the United States is fast reaching stabilization with the resulting effect that more heifers are being marketed, since only one-fourth of the heifer crop is needed to replace worn-out breeding animals. Realizing the increasing importance of the heifer problem from the standpoint of the producer, feeder, and consumer, the Nebraska Experiment Station undertook to compare steers and heifers in a series of trials both in the feedlot and in the beef. It was hoped that these experiments would yield results which would bring out existing differences, if any, between steers and heifers both in quality and quantity of beef produced and thus provide or disprove many of the complaints against heifers. The results of these trials are summarized in this bulletin. Age as well as the sex factor has been considered, since two-year-olds, yearlings, and calves were included in these trials.
Resumo:
Gray whales are coastal migratory baleen whales that are benthic feeders. Most of their feeding takes place in the northern Pacific Ocean with opportunistic feeding taking place during their migrations and residence on the breeding grounds. The concentrations of organochlorines and trace elements were determined in tissues and stomach contents of juvenile gray whales that were taken on their Arctic feeding grounds in the western Bering Sea during a Russian subsistence harvest. These concentrations were compared to previously published data for contaminants in gray whales that stranded along the west coast of the US during their northbound migration. Feeding in coastal waters during their migrations may present a risk of exposure to toxic chemicals in some regions. The mean concentration (standard error of the mean, SEM) of Σ PCBs [1400 (130) ng/g, lipid weight] in the blubber of juvenile subsistence whales was significantly lower than the mean level [27 000 (11 000) ng/g, lipid weight] reported previously in juvenile gray whales that stranded in waters off the west coast of the US. Aluminum in stomach contents of the subsistence whales was high compared to other marine mammal species, which is consistent with the ingestion of sediment during feeding. Furthermore, the concentrations of potentially toxic chemicals in tissues were relatively low when compared to the concentrations in tissues of other marine mammals feeding at higher trophic levels. These chemical contaminant data for the subsistence gray whales substantially increase the information available for presumably healthy animals.
Resumo:
The seasonal distributions of humpback and blue whales (Megaptera novaeangliae and Balaenoptera musculus, respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales’ migratory timing and routes.
Resumo:
Results from a large-scale, capture–recapture study of humpback whales Megaptera novaeangliae in the North Atlantic show that migration timing is influenced by feeding ground origin. No significant differences were observed in the number of individuals from any feeding area that were re-sighted in the common breeding area in the West Indies. However, there was a relationship between the proportion (logit transformed) of West Indies sightings and longitude (r2 = 0.97, F1,3 = 98.27, P = 0.0022) suggesting that individuals feeding farther to the east are less likely to winter in the West Indies. A relationship was also detected between sighting date in the West Indies and feeding area. Mean sighting dates in the West Indies for individuals identified in the Gulf of Maine and eastern Canada were significantly earlier than those for animals identified in Greenland, Iceland and Norway (9.97 days, t179 = 3.53, P = 0.00054). There was also evidence for sexual segregation in migration; males were seen earlier on the breeding ground than were females (6.63 days, t105 = 1.98, P = 0.050). This pattern was consistently observed for animals from all feeding areas; a combined model showed a significant effect for both sex (F1 = 5.942, P = 0.017) and feeding area (F3 =4.756, P=0.0038). The temporal difference in occupancy of the West Indies between individuals from different feeding areas, coupled with sexual differences in migratory patterns, presents the possibility that there are reduced mating opportunities between individuals from different high latitude areas.
Resumo:
Beginning in the late 1980s, large groups of previously unidentified killer whales (Orcinus orca) were sighted off the west coast of Vancouver Island and in the Queen Charlotte Islands, British Columbia. Scientists working in this region produced two killer whale photo-identification catalogues that included both transient (mammal-eating) whales and 65 individual whales that investigators believed represented a distinct killer whale community (Ford et al. 1992, Heise et al. 1993). It was thought that these killer whales maintained a generally offshore distribution and were provisionally termed “offshores”; a term that has since been used as a population identifier for the eastern temperate North Pacific offshore killer whale population. Then in September 1992, 75 unidentified whales entered the Strait of Juan de Fuca just south and east of Victoria, British Columbia (Walters et al. 1992). Although most of these whales had not been seen before, two were matched to killer whales in the Queen Charlotte photo-identification catalogue (Ford et al. 1992, Heise et al. 1993) and were thus listed as “offshore” killer whales. During a similar time period, other large groups of killer whales, previously unidentified, were also being sighted off Alaska and California (Dahlheim et al. 1997; Nancy Black and Alisa Schulman- Janiger, unpublished data, respectively).
Resumo:
The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).
Resumo:
Poison baits are extensively used for commensal rodent control; considerable folk lore exists regarding the use of additives to induce rodents to come to and eat poison baits. This paper describes a rational evaluation of attractants and the influence of different odours in inducing Rattus norvegicus to feed at given locations. The influence of certain repellents was also examined. Tests consisted of attempts to induce rats to feed at non-preferred sites or to repel them from preferred sites. Place preference was the dominant factor in feeding by rats, and odours failed to influence feeding activity significantly.