1 resultado para computed tomographic scan artifact, false positive, facet subluxation
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (11)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (39)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (145)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (8)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (151)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (18)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (17)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (21)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (9)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (74)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (130)
- Université de Montréal (3)
- Université de Montréal, Canada (11)
- University of Queensland eSpace - Australia (69)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
Static analysis tools report software defects that may or may not be detected by other verification methods. Two challenges complicating the adoption of these tools are spurious false positive warnings and legitimate warnings that are not acted on. This paper reports automated support to help address these challenges using logistic regression models that predict the foregoing types of warnings from signals in the warnings and implicated code. Because examining many potential signaling factors in large software development settings can be expensive, we use a screening methodology to quickly discard factors with low predictive power and cost-effectively build predictive models. Our empirical evaluation indicates that these models can achieve high accuracy in predicting accurate and actionable static analysis warnings, and suggests that the models are competitive with alternative models built without screening.