2 resultados para carrying capacity
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimorphism, with adult males possessing large, elaborate antlers. Antler size and conformation are influenced by age, nutrition and genetics, and these bony structures serve to establish social rank and affect mating success. Population density, combined with anthropogenic effects such as harvest, is thought to influence antler size. Antler size increased as densities of moose decreased, ostensibly a density-dependent response related to enhanced nutrition at low densities. The vegetation type where moose were harvested also affected antler size, with the largest-antlered males occupying more open habitats. Hunts with guides occurred in areas with low moose density, minimized hunter interference and increased rates of success. Such hunts harvested moose with larger antler spreads than did non-guided hunts. Knowledge and abilities allowed guides to satisfy demands of trophy hunters, who are an integral part of the Alaskan economy. Heavy harvest by humans was also associated with decreased antler size of moose, probably via a downward shift in the age structure of the population resulting in younger males with smaller antlers. Nevertheless, density-dependence was more influential than effects of harvest on age structure in determining antler size of male moose. Indeed, antlers are likely under strong sexual selection, but we demonstrate that resource availability influenced the distribution of these sexually selected characters across the landscape. We argue that understanding population density in relation to carrying capacity (K) and the age structure of males is necessary to interpret potential consequences of harvest on the genetics of moose and other large herbivores. Our results provide researchers and managers with a better understanding of variables that affect the physical condition, antler size, and perhaps the genetic composition of populations, which may be useful in managing and modeling moose populations.
Resumo:
We conducted a comprehensive research project on elk in the Pine Ridge region of northwestern Nebraska from 1995 to 2002 to determine ecological factors that could be used to improve management and reduce damage. The population ranged from 120 to 150 animals, with an average calf:cow ratio of 0.5:1 and bull:cow ratio of 0.4:1. We located 21 radio-collared female elk 6,311 times during 1995 to 1997. Seasonal home ranges of 2 herds were 10 and 44 km2, while average annual home ranges of the herds were much larger (483 and 440 km2, respectively). All wintering areas (n = 21) and 80% of the calving areas (n = 22) were located on privately-owned land. Active timber harvest temporarily displaced elk, most notably during the calving season. Elk shifted home ranges in association with the seasonal availability of agricultural crops, in particular, alfalfa, oats, and winter wheat. Population models indicated that static levels of hunting mortality would lead to a stable population of about 130 elk over 10 years. Most landowners in the Pine Ridge (57%) favored free-ranging elk, but 26% were concerned about damage to agricultural crops and competition with livestock. Habitat suitability models and estimates of social carrying capacity indicate that up to 600 elk could be sustained in the Pine Ridge without significant impacts to landowners. We recommended an integrated management program used to enhance elk habitat on publicly-owned land and redistribute elk from privately-owned land.