11 resultados para breeding livestock
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
This extension circular is an income statement form that covers the following areas: Cash Farm Income (grain/hay sales, livestock sales, livestock product sales, government payments, custom work); Cash Farm Expenses (cash operating, breeding livestock purchases, gross cash farm expenses); Adjustment (inventory, machinery/equipment depreciation, fixed farm improvements depreciation, capital gain or loss on machinery/equipment, gross sales of machinery/equipment, real estate sold); and Non-Farm Income (operators's wage, wife's wage, interest/dividend income, gifts/inheritances, gain or loss on security, non-farm inventory change, net income on other farms owned and non-farm real estate).
Resumo:
This extension circular covers the following areas of a cash flow planning form: Beginning Cash Balance, Operating Sales (crop and hay, market livestock, livestock product, custom work); Capital Sales (breeding livestock, machinery and equipment); Personal Income (wages, interest); Operating Expenses (car/truck, chemicals, conservation, custom hire, feed purchased, fertilizers and lime, freight and trucking, gasoline, fuel and oil, insurance, labor hired, rents and leases, repairs and maintenance, seeds and plants, storage, warehousing, supplies, taxes, utilities, veterinary, breeding fees and medicine, feeder livestock); Capital Purchases (breeding livestock, machinery and equipment, family living withdrawals, personal investments, income and social security, term loan payments); Net Cash Available (operating loan borrowings, operating loan payments); and Ending Operating Loan Balance. Along with the Cash Flow Planning Form is a Projected Income Statement Form which covers Projected Business Income (operating sales, breeding livestock, estimated cash income adjustments, estimated gross revenues, estimated value of production); Project Business Expenses (cash operating, esimated operating, prepaid and supplies, cash investment in growing crops, accounts payable); Projected Net Income Summary (estimated net income from operations, estimated net business income, estimated net income after taxes, estimated earned net worth change); and a Physical Inventory Flows Worksheet.
Resumo:
Since 1994, the state of Michigan has recognized a problem with bovine tuberculosis (TB), caused by Mycobacterium bovis, in wild white-tailed deer from a 12-county area in northeastern Lower Michigan. A total of 65,000 free-ranging deer have been tested, and 340 have been found to be positive for M. bovis. The disease has been found in other wildlife species, and, in 1998, in domestic cattle, where to date 13 beef cattle and 2 dairy cattle herds have been diagnosed with bovine TB. Unfortunately, the situation is unique in that there have never been reports of self-sustaining bovine TB in a wild, free-ranging cervid population in North America. Scientists, biologists, epidemiologists, and veterinarians who have studied this situation have concluded that the most logical theory is that high deer densities and the focal concentration caused by baiting (the practice of hunting deer over feed) and feeding are the factors most likely responsible for the establishment of self-sustaining TB in free-ranging Michigan deer. Baiting and feeding have been banned since 1998 in counties where the disease has been found. In addition, the deer herd has been reduced by 50% in the endemic area with the use of unlimited antlerless permits. The measures of apparent TB prevalence have been decreased by half since 1997, providing hopeful preliminary evidence that eradication strategies are succeeding.
Resumo:
Population structure and patterns of habitat use among ringed seals (Phoca hispida) are poorly known, in part because seasonal movements have not been adequately documented. We monitored the movements of 98 ringed seals in the Beaufort and Chukchi seas between 1990 and 2006 using three forms of telemetry. In the winter—spring period (when the seals were occupying shorefast ice), we used radio and ultra-sonic tags to track movements above and below the ice, respectively. We used satellite-linked transmitters in summer and fall (when the seals ranged away from their winter sites) to track at-sea movements. In the shorefast ice habitat, the home ranges of 27 adult males ranged from\1 to 13.9 km2 (median = 0.628) while the home ranges of 28 adult females ranged from \1 to 27.9 km2 (median = 0.652). The 3-dimensional volumes used by 9 seals tracked acoustically under the ice averaged 0.07 (SD = 0.04) km3 for subadults and adult males and 0.13 (SD = 0.04) km3 for adult females. Three of the radio-tracked seals and 9 tracked by satellite ranged up to 1,800 km from their winter/spring home ranges in summer but returned to the same small (1–2 km2) sites during the ice-bound months in the following year. The restricted movements of ringed seals during the ice-bound season— including the breeding season—limits their foraging activities for most of the year and may minimize gene flow within the species.
Resumo:
Disease transmission between wildlife and livestock is a worldwide issue. Society needs better methods to prevent interspecies transmission to reduce disease risks. Producers have successfully used livestock protection dogs (LPDs) for thousands of years to reduce predation. We theorized that LPDs raised and bonded with cattle could be used to also reduce risk of bovine tuberculosis (Myobacterium bovis; TB) transmission between white-tailed deer (Odocoileus virginianus) and cattle by minimizing contact between the 2 species and use of cattle feed by deer. We evaluated 4 LPDs over 5 months, utilizing 2 data collection methods (direct observation and motion-activated video) on deer farms that supported higher densities than wild populations. Dogs were highly effective in preventing deer from using concentrated cattle feed (hay bales), likely the greatest risk factor of TB transmission on farms. Dogs also prevented deer from approaching cattle in core areas of pastures (near hay bales) and were very effective throughout pastures. Our research supports the theory that LPDs, specifically trained to remain with cattle, may be a practical tool to minimize potential for livestock to contract TB from infected deer in small-scale cattle operations. Where disease is present in deer, it may be possible to reduce the potential for disease transmission by employing LPDs.
Resumo:
In 1975, the gray wolf (Canis lupus) population in Minnesota was protected by the federal Endangered Species Act (USA). At that time, there were 500-750 wolves. By 2004, the population had grown to an estimated 3,020 wolves. Over time, conflicts between wolves and livestock increased. Wolf depredation control programs have been conducted by the U.S. Fish and Wildlife Service (1975-1986) and by the U.S. Department of Agriculture’s Wildlife Services program (1986 to present). In 1978, Minnesota’s wolves were reclassified from endangered to threatened which allowed authorized federal agents to lethally remove wolves that had depredated on livestock or pets. A State funded wolf compensation program was also established in 1978. Wildlife Services’ wolf damage management approach utilizes both nonlethal and lethal methods of control. Currently, wolf depredations are verified at 60-85 farms annually and 125-175 wolves are taken each year. Wolf compensation payments to livestock producers have averaged $67,111 per year during the past five years. Most livestock losses occur during spring and summer. Selective removal of depredating wolves, coupled with improvements in animal husbandry practices, has potential for reducing wolf-livestock conflicts. Minnesota’s wolf population is currently considered to be fully recovered and federal delisting is expected to occur in the near future.
Resumo:
The Pest Management Strategy for Bovine Tuberculosis (Tb) in New Zealand aims to achieve efficient freedom from Tb by 2013 and to eradicate the disease from livestock and wildlife. The West Taupo area, in the central North Island of New Zealand, was chronically infected with Tb in both domestic livestock herds (cattle and deer) and within wildlife populations (brushtail possum, ferret, feral deer and pigs). Through the development and implementation of a technically innovative management plan, this area is now approaching Tb free status. The case study / management plan reported here discusses the operational techniques and strategies that were implemented to achieve Tb clearance in the livestock herds and the possibilities of eradication from wildlife species. It particularly identifies the variations in control strategies that are required as population densities reduce and the challenges of maintaining strong effective control at low densities of some wildlife species, whilst not needing to control other species that were initially clinically diagnosed with Tb control. Use of diagnostic tools and education as an area moves through the cycle towards Tb freedom are as essential as the physical control activities. The use of intensive monitoring of both livestock and wildlife species as trend and performance indicators and the need to educate farmers, hunters and other land use groups become increasingly important.
Resumo:
Swine production has increasingly become a lowmargin business. As costs of production have increased, producers are continuing to increase efficiency in both market pig production and gilt development. Restricting energy during gilt development reduces feeding costs and can enhance some productivity measures, but can also negatively impact other areas of production. Thus, the net economic returns from a restricted energy gilt development program are unclear. This study utilized gilt development and market pig production data for two genetic lines of hogs, LWxLR (a cross between industry Large White and Landrace) and L45X (a Nebraska line selected 23 generations for increased litter size) from Johnson and Miller and Johnson et al., to estimate the returns to finishing market hogs using conventional and restricted energy gilt development programs.
Resumo:
This NebGuide provides a list of various market information sources, each followed by a brief summary of issue schedules and contents. It provides a listing of widely used and readily available market information sources that contain information which may be useful to agricultural producers, lenders and agribusiness firms when making livestock and poultry marketing decisions. Most of the available market information and statistical data comes from the U.S. Department of Agriculture (USDA). Many now require an annual subscription fee.
Resumo:
The Livestock Waste Management Act requires all livestock operations with 300 animal units or more to be inspected by the Nebraska Department of Environmental Quality (DEQ) to determine whether livestock wastes contaminate surface or ground water. This NebFact discusses the following parts of the Livestock Waste Management Act: Act (how cited); Terms (defined); Livestock operation, exemption, livestock waste control facility, permit, restriction; Construction permit or operating permit (when required), livestock waste control facilities, classification, restrictions; Section (how construed); Cold water class A streams (designation); Permit (acknowledgment required); Livestock operation (request inspection, when, fees, department, duties); Permits (duration, modification); Permit (application and modification fees, Livestock Waste Management Cash Fund (created, use, investment, report, legislative intent); Applicant (rejection, grounds, application, information required, certification required); Postconstruction inspection requirement; Department (contracts authorized, permit application, notice required); Permit application (approval from Department of Natural Resources and Department of Environmental Quality, powers); Council (rules and regulations); and Enforcement of act (legislative intent).
Resumo:
A sample of 608 adult pigs from Cape York and adjacent islands was examined for parasites and their serum tested for livestock diseases associated with the Queensland tropics. Feral pigs from North Queensland pose a significant health threat to humans with the incidence of Spargana (the plerocercoid of Spirometra erinacei) through the consumption of undercooked pork. Meliodosis (Pseudomonas pseudomalleO. Leptospirosis (L. yar. pomona). and Brucellosis (Brucella suis) are capable of infecting humans directly during unhygienic butchering of infected carcasses. In North Queensland, the widespread intermingled distribution of feral pigs and cattle increases the potential for the transmission of Actinobacillus, Leptospirosis, and Brucellosis from feral pigs to cattle. Both Europeans and Aborigines on Cape York also raise wild-caught feral pigs for meat. It is important to realize that parasites and diseases are present in young pigs and that poor husbandry practices increase the risk of infection from several parasites, i.e., Lungworm (Metastrongylus sp.) Stomach worm (Physocephalus sexalatus. Hvostrongvlus rubidus). Thorny headed worm (Macracanthorrhynchus hirudinaceus) and Kidney worm (Stephanurus dentatus). Heavy infection of these parasites reduce growth rates and cause unthriftiness in infected ani¬mals.