6 resultados para black foot
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The Black Sea is a semi-enclosed body of water that differs from the adjacent Mediterranean Sea in terms of its biodiversity, oceanographical and ecological characteristics. There is growing international concern about pollution in the Black Sea and other anthropogenic threats to its fauna. The bottlenose dolphin (Tursiops truncatus) is one of three species of cetaceans living in the Azov-Black Sea basin. Despite considerable research on bottlenose dolphins elsewhere, the extent of human impacts on the Black Sea populations is unknown. Previous attempts to award special conservation status to Black Sea cetaceans have failed specifically because policy makers have viewed their ecological and evolutionary uniqueness as equivocal. This study assessed divergence between Black Sea, Mediterranean Sea and Atlantic Ocean bottlenose dolphins for 26 cranial measurements (n = 75 adult bottlenose dolphin skulls) and mitochondrial DNA (n = 99 individuals). Black Sea bottlenose dolphins are smaller than those in the Mediterranean, and possess a uniquely shaped skull. As in a previous study, we found the Black Sea population to be genetically distinct, with relatively low levels of mtDNA diversity. Population genetic models suggest that Black Sea bottlenose dolphins have so little gene flow with the Mediterranean due to historical isolation that they should be managed separately.
Resumo:
Black bears (Ursus americanus) forage selectively in natural environments. To determine if bears also forage selectively for anthropogenic resources we analyzed data on vehicles broken into by bears from Yosemite National Park, California. We classified vehicles into 9 categories based on their make and model and collected data on use (2001–2007) and availability (2004–2005). From 2001 to 2007 bears broke into 908 vehicles at the following rates: minivan (26.0%), sport–utility vehicle (22.5%), small car (17.1%), sedan (13.7%), truck (11.9%), van (4.2%), sports car (1.7%), coupe (1.7%), and station wagon (1.4%). Only use of minivans (29%) during 2004–2005 was significantly higher than expected (7%). We discuss several competing hypotheses about why bears selected minivans.
Resumo:
Ctenosaura similis is exotic to Florida (Meshaka et al. 2004. The Exotic Amphibians and Reptiles of Florida, Krieger Publ. Co., Malabar, Florida. 155 pp.), whereas Gopherus polyphemus is listed as a species of special concern by the state of Florida (Florida Wildlife Code Chap. 39 F.A.C.), and as a threatened species by the Florida Committee on Rare and Endangered Plants and Animals (FCREPA) (Moler 1992. Rare and Endangered Biota of Florida: Volume III, Reptiles and Amphibians. University Press of Florida, Gainesville, Florida. 291 pp.).
Resumo:
Our experiment demonstrated that black-tailed prairie dogs (Cynomys ludovicianus) will consume rodenticide underground in their burrows. We demonstrated the efficacy of Rozol Pocket Gopher Bait containing the active ingredient chlorophacione (0.005%) 21 days post treatment for managing black-tailed prairie dogs in their burrows in Kansas. Active prairie dog burrows were reduced 90% when 54 grams of Rozol was placed in the burrow without prebaiting. Results indicate use of this toxicant when placed in the burrow can be an effective means of managing prairie dogs. In-burrow application of rodenticides for black-tailed prairie dog management should markedly reduce exposure of birds to toxic bait.
Resumo:
The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.
Resumo:
“Black faculty focus groups explored major issues and concerns, examined awareness levels of Black faculty, and identified factors that have positive impact on recruitment and retention efforts.”