2 resultados para atmospheric plume
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Fifty-one slimy sea plumes (Pseudopterogorgia americana Gmelin, 1791) were sampled for caridean shrimps at Guana Island, British Virgin Islands, during one week in July 1992. Sam- pling depth ranged from 3-22 m. Nine species were collected: Hippolyte nicholsoni Chace, 1972; Latreutes sp.; Neopontonides chacei Heard, 1986; Perclimenes cf. patae Heard and Spotte, 1991; Periclimenes cf. pauper Holthuis, 1951; Periclimenes sp.; Pseudocoutierea antillensis Chace, 1972; Tozeuma cf. cornutum Milne Edwards, 1881; and Trachycaris rugosa (Bate, 1888). A total of 1,418 specimens (including fragments) was obtained. The number of shrimp species per gorgonian ranged from 1-5; one gorgonian harbored 156 shrimps. The two predominant species, N. chacei and H. nicholsoni, occupy different mean depths (12.6 and 8.2 m, respectively). Sexual dimorphism assessed with Mann-Whitney U-tests was not apparent in the specimens of N. chacei (P > 0.05), but females of H. nicholsoni were significantly larger than males (P < 0.001). Minimum carapace length (CL, the tip of the rostrum to the posterior dorsal margin of the carapace) at which male N. chacei acquire a single appendix masculina spine is 1.25 mm; male H. nicholsoni can acquire a single spine at 0.9 mm CL. Histological sections of male N. chacei showed that shrimp with 0 or 1 spine are least likely to be mature. Female N. chacei can become ovigerous at 1.9 mm CL and female H. nicholsoni at 1.2 mm CL. The taxonomic status of 5 of the 9 species collected is uncertain.
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions