5 resultados para anti-social behavior
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Chronic wasting disease (CWD) has become a concern for wildlife managers and hunters across the United States. High prevalence of chronic wasting disease (CWD) in older male white-tailed deer (Odocoileus virginianus) suggests that sex-specific social behavior may contribute to the spread of the disease among males. Scraping is a marking behavior performed by male white-tailed deer during the rut in which a pawed depression and associated over-hanging branch are marked with saliva, glandular secretions, urine, and feces. We placed 71 and 35 motion-activated cameras on scrapes in DeSoto National Wildlife Refuge in western Nebraska and eastern Iowa from Oct. – Nov. 2005 and Sept. – Nov. 2006, respectively. We recorded 5009 encounters and 1830 direct interactions. We developed an ethogram of behaviors of interest at scrapes. We found that males interacted with scrapes more frequently than females (P < 0.001). Male interactions were more complex, with 69% consisting of ≥2 observed behaviors versus 25% and 13% for females and fawns. We identified individual male deer ≥2.5 years old and determined the minimum number of different scrapes individuals visited and the number of individuals that visit a single scrape. Individuals that appeared on camera ≥5 times visited a mean of 3.9 scrapes (range = 1-15) and traveled a mean minimum distance of 978 m between consecutive scrapes. A mean of 5.1 individuals visited a single scrape, and up to 43% of individuals returned to a scrape previously visited at least once. We modeled Risk Values based on frequency of occurrence, duration, and Threat Values of each behavior, for contacting and transmitting CWD prions at scrapes. Adult males had the highest total Risk Values for contacting CWD prions (114.1) and shedding prions (59.4). The “grasp-lick branch” behavior had the highest Risk Value for adult males for both contacting and transmitting prions. Our study reveals a sex specific social behavior in male white-tailed deer that has the potential to spread chronic wasting disease between adult males in the population.
Resumo:
The hunting behavior of leopard seals Hydrurga leptonyx was monitored opportunistically at Seal Island, South Shetland Islands, during the austral summers from 1986/87 to 1994/95. Leopard seals used several methods to catch Antarctic fur seal pups Arctocephalus gazella and chinstrap penguins Pygoscelis antarctica, and individuals showed different hunting styles and hunting success. One to two leopard seals per year were responsible for an average of 60% of observed captures of fur seal pups. Leopard seals preyed on penguins throughout the summer, but preyed on fur seal pups only between late December and mid-February. Hunting behavior differed significantly between different locations on the island; fur seals were hunted only at one colony, and penguins were hunted in several areas. The relative abundance of prey types, size of prey in relation to predator, and specialization of individual leopard seals to hunt fur seal prey probably influence individual prey preferences among leopard seals. On five occasions, two leopard seals were seen together on Seal Island. Possible interpretations of the relationship between the interacting leopard seals included a mother-offspring relationship, a consorting male-female pair, and an adult leopard seal followed by an unrelated juvenile. In two incidents at Seal Island, two leopard seals were observed interacting while hunting: one seal captured fur seal pups and appeared to release them to the other seal. Observations of leopard seals interacting during hunting sessions were difficult to confirm as co-operative hunting, but they strongly implied that the two seals were not agonistic toward one another. The hunting success of individual leopard seals pursuing penguins or fur seals is probably high enough for co-operative hunting not to become a common hunting strategy; however, it may occur infrequently when it increases the hunting productivity of the seals.
Resumo:
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Resumo:
We describe a novel behavior, termed “tail-up,” observed in humpback whales (Megaptera novaeangliae) on wintering grounds on Abrolhos Bank, Brazil. The behavior involves the whale positioned vertically in the water column with its tail in the air. Wirh the exception of calves, tail-up was observed in all social classes, and its frequency increased through the end of the season. Tail-ups were recorded in 144 (5.8%) of 2,465 groups of whales observed from a shore station, and in 297 (14.9%) of 1,996 groups observed from vessel surveys; biases in each method suggest that the true frequency lies between these sources. One hundred and fifty-two hours of continuous sampling showed that the duration of tail-up events lasted from a few seconds to 12 min and was longest in groups comprised of a single adult. The maximum duration of a recorded period that consistently included tail-up was 10 h; however, some individuals were observed to engage in the behavior at night and for four consecutive days. Tail-up movement speed did not vary by social class; however, it varied according to wind direction and speed. The characteristics of tail-up that we observed showed that it differed from the descriptions of similar behaviors in other cetacean species. The function of tail-up is unknown, but we suggest that it may be a multifunctional behavior.
Resumo:
There is a growing recognition among wildlife managers that focusing management on wildlife often provides a temporary fix to human–wildlife conflicts, whereas changing human behavior can provide long-term solutions. Human dimensions research of wildlife conflicts frequently focuses on stakeholders’ characteristics, problem identification, and acceptability of management, and less frequently on human behavior and evaluation of management actions to change that behavior. Consequently, little information exists to assess overall success of management. We draw on our experience studying human–bear conflicts, and argue for more human dimensions studies that focus on change in human behavior to measure management success. We call for help from social scientists to conduct applied experiments utilizing two methods, direct observation and self-reported data, to measure change in behavior. We are optimistic these approaches will help fill the managers’ tool box and lead to better integration of human dimensions into human–wildlife conflict management.