6 resultados para allocation of prizes
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Research literature is replete with the importance of collaboration in schools, the lack of its implementation, the centrality of the role of the principal, and the existence of a gap between knowledge and practice--or a "Knowing-Doing Gap." In other words, there is a set of knowledge that principals must know in order to create a collaborative workplace environment for teachers. This study sought to describe what high school principals know about creating such a culture of collaboration. The researcher combed journal articles, studies and professional literature in order to identify what principals must know in order to create a culture of collaboration. The result was ten elements of principal knowledge: Staff involvement in important decisions, Charismatic leadership not being necessary for success, Effective elements of teacher teams, Administrator‘s modeling professional learning, The allocation of resources, Staff meetings focused on student learning, Elements of continuous improvement, and Principles of Adult Learning, Student Learning and Change. From these ten elements, the researcher developed a web-based survey intended to measure nine of those elements (Charismatic leadership was excluded). Principals of accredited high schools in the state of Nebraska were invited to participate in this survey, as high schools are well-known for the isolation that teachers experience--particularly as a result of departmentalization. The results indicate that principals have knowledge of eight of the nine measured elements. The one that they lacked an understanding of was Principles of Student Learning. Given these two findings of what principals do and do not know, the researcher recommends that professional organizations, intermediate service agencies and district-level support staff engage in systematic and systemic initiatives to increase the knowledge of principals in the element of lacking knowledge. Further, given that eight of the nine elements are understood by principals, it would be wise to examine reasons for the implementation gap (Knowing-Doing Gap) and how to overcome it.
Resumo:
The September l1th Victim Compensation Fund (the Fund) was created in response to the terrorist attacks of September 11, 2001. Much has been written about the Fund, both pro and con, in both popular media and scholarly literature. Perhaps the most widely used term in referring to the Fund is "unprecedented." The Fund is intriguing for many reasons, particularly for its public policy implications and its impact on the claimants themselves. The federal government has never before provided compensation to victims of terrorism through a special master who had virtually unlimited discretion in determining awards. Consequently, this formal allocation of money by a representative of the federal government to its citizens has provided an opportunity to test theories of procedural and distributive justice in a novel context. This article tests these theories by analyzing the results of a study of the Fund's claimants. Part I provides general background, summarizes existing commentary on the Fund, and discusses prior research on social justice that is relevant to the 9/11 claimants' experiences with the Fund. Part II of this article describes the methodology behind the study, in which seventy-one individuals who filed claims with the Fund completed surveys about their experiences with and perceptions of the Fund. Part III discusses the survey results. We found that participants were reasonably satisfied with the procedural aspects of the Fund, such as representatives' impartiality and respectful treatment. Participants were less satisfied, however, with the distributive aspects of the Fund, such as the unequal distribution of compensation and the reduction in compensation if claimants received compensation from other sources (e.g., life insurance). Part IV of this article addresses the implications of the study results for public policy and for theories of social justice.
Resumo:
Abstract The purpose of this research was to study the sex distribution and energy allocation of dioecious Eastern Red Cedars (Juniperus virginiana) along an environmental resource gradient. The trees surveyed were growing in a canyon located at the University of Nebraska’s Cedar Point Biological Research Station in Ogallala, Nebraska. Due to the geography of this canyon, environmental factors necessary for plant growth should vary depending on the tree’s location within the canyon. These factors include water availability, sun exposure, ground slope, and soil nitrogen content, all of which are necessary for carbon acquisition. Juniperus virginiana is a dioecious conifer. Dioecious plants maintain male and female reproductive structures on separate individuals. Therefore, proximal spatial location is essential for pollination and successful reproduction. Typically female reproductive structures are more costly and require a greater investment of carbon and nitrogen. For this reason, growth, survival and successful reproduction are more likely to be limited by environmental resources for females than for male individuals. If this is true for Juniperus virginiana, females should be located in more nutrient and water rich areas than males. This also assumes that females can not be reproductively successful in areas of poor environmental quality. Therefore, reproductive males should be more likely to inhabit environments with relatively lower resource availability than females. Whether the environment affects sexual determination or just limits survival of different sexes is still relatively unknown. In order to view distribution trends along the environmental gradient, the position of the tree in the canyon transect was compared to its sex. Any trend in sex should correspond with varying environmental factors in the canyon, ie: sunlight availability, aspect, and ground slope. The individuals’ allocation to growth and reproduction was quantified first by comparing trunk diameter at six inches above ground to sex and location of the tree. The feature of energy allocation was further substantiated by comparing carbon and nitrogen content in tree leaf tissue and soil to location and sex of each individual. Carbon and nitrogen in soil indicate essential nutrient availability to the individual, while C and N in leaf tissue indicate nutrient limitation experienced by the tree. At the conclusion of this experiment, there is modest support that survival and fecundity of females demands environments relatively richer in nutrients, than needed by males to survive and be reproductively active. Side of the canyon appeared to have an influence on diameter of trees, frequency of sex and carbon and nitrogen leaf content. While this information indicated possible trends in the relation of sex to nutrient availability, most of the environmental variables presumed responsible for the sex distribution bias differed minutely and may not have been biologically significant to tree growth.
Resumo:
Translucent wavelength-division multiplexing optical networks use sparse placement of regenerators to overcome physical impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks at a much less cost. In previous studies, we addressed the placement of regenerators based on static schemes, allowing for only a limited number of regenerators at fixed locations. This paper furthers those studies by proposing a dynamic resource allocation and dynamic routing scheme to operate translucent networks. This scheme is realized through dynamically sharing regeneration resources, including transmitters, receivers, and electronic interfaces, between regeneration and access functions under a multidomain hierarchical translucent network model. An intradomain routing algorithm, which takes into consideration optical-layer constraints as well as dynamic allocation of regeneration resources, is developed to address the problem of translucent dynamic routing in a single routing domain. Network performance in terms of blocking probability, resource utilization, and running times under different resource allocation and routing schemes is measured through simulation experiments.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.