1 resultado para Zero-inflated models, Statistical models, Poisson, Negative binomial, Statistical methods
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Aston University Research Archive (15)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (40)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (51)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (69)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (10)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (11)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (33)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (51)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (9)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (155)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- Scielo Saúde Pública - SP (26)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (8)
- Université de Lausanne, Switzerland (62)
- Université de Montréal, Canada (56)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (9)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (3)
- University of Washington (5)
Resumo:
Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat, Alaska. A hurdle model is similar to a ZIP model except it does not mix zeros from the binary and count processes. Both models can be used for zero-inflated data, and we compared space–time ZIP and hurdle models in a Bayesian hierarchical model. Space–time ZIP and hurdle models were constructed by using spatial conditional autoregressive (CAR) models and temporal first-order autoregressive (AR(1)) models as random effects in ZIP and hurdle regression models. We created maps of smoothed predictions for harbor seal counts based on ice density, other covariates, and spatio-temporal random effects. For both models predictions around the edges appeared to be positively biased. The linex loss function is an asymmetric loss function that penalizes overprediction more than underprediction, and we used it to correct for prediction bias to get the best map for space–time ZIP and hurdle models.