2 resultados para YOUNGS MODULUS

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Degeneration of tendon tissue is a common cause of tendon dysfunction with the symptoms of repeated episodes of pain and palpable increase of tendon thickness. Tendon mechanical properties are directly related to its physiological composition and the structural organization of the interior collagen fibers which could be altered by tendon degeneration due to overuse or injury. Thus, measuring mechanical properties of tendon tissue may represent a quantitative measurement of pain, reduced function, and tissue health. Ultrasound elasticity imaging has been developed in the last two decades and has proved to be a promising tool for tissue elasticity imaging. To date, however, well established protocols of tendinopathy elasticity imaging for diagnosing tendon degeneration in early stages or late stages do not exist. This thesis describes the re-creation of one dynamic ultrasound elasticity imaging method and the development of an ultrasound transient shear wave elasticity imaging platform for tendon and other musculoskeletal tissue imaging. An experimental mechanical stage with proper supporting systems and accurate translating stages was designed and made. A variety of high-quality tissue-mimicking phantoms were made to simulate homogeneous and heterogeneous soft tissues as well as tendon tissues. A series of data acquisition and data processing programs were developed to collect the displacement data from the phantom and calculate the shear modulus and Young’s modulus of the target. The imaging platform was found to be capable of conducting comparative measurements of the elastic parameters of the phantoms and quantitatively mapping elasticity onto ultrasound B-Mode images. This suggests the system has great potential for not only benefiting individuals with tendinopathy with an earlier detection, intervention and better rehabilitation, but also for providing a medical tool for quantification of musculoskeletal tissue dysfunction in other regions of the body such as the shoulder, elbow and knee.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.