2 resultados para Working Memory Capacity
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development, with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change.
Resumo:
The next-generation SONET metro network is evolving into a service-rich infrastructure. At the edge of such a network, multi-service provisioning platforms (MSPPs) provide efficient data mapping enabled by Generic Framing Procedure (GFP) and Virtual Concatenation (VC). The core of the network tends to be a meshed architecture equipped with Multi-Service Switches (MSSs). In the context of these emerging technologies, we propose a load-balancing spare capacity reallocation approach to improve network utilization in the next-generation SONET metro networks. Using our approach, carriers can postpone network upgrades, resulting in increased revenue with reduced capital expenditures (CAPEX). For the first time, we consider the spare capacity reallocation problem from a capacity upgrade and network planning perspective. Our approach can operate in the context of shared-path protection (with backup multiplexing) because it reallocates spare capacity without disrupting working services. Unlike previous spare capacity reallocation approaches which aim at minimizing total spare capacity, our load-balancing approach minimizes the network load vector (NLV), which is a novel metric that reflects the network load distribution. Because NLV takes into consideration both uniform and non-uniform link capacity distribution, our approach can benefit both uniform and non-uniform networks. We develop a greedy loadbalancing spare capacity reallocation (GLB-SCR) heuristic algorithm to implement this approach. Our experimental results show that GLB-SCR outperforms a previously proposed algorithm (SSR) in terms of established connection capacity and total network capacity in both uniform and non-uniform networks.