7 resultados para Wildlife-based tourism
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.
Resumo:
The spread of wildlife diseases is a major threat to livestock, human health, resource-based recreation, and biodiversity conservation (Cleaveland, Laurenson, and Taylor). The development of economically sound wildlife disease-management strategies requires an understanding of the links between ecological functions (e.g., disease transmission and wildlife dispersal) and economic choices, and the associated tradeoffs. Spatial linkages are particularly relevant. Yet while ecologists have long-argued that space is important (Hudson et al.), prior economic work has largely ignored spatial issues. For instance, Horan and Wolf analyzed a case study of bovine tuberculosis (bTB) in Michigan deer, a problem where the disease appears to be confined to a single, spatially confined, wildlife population—an island. But wildlife disease matters generally are not spatially confined. Barlow, in analyzing bTB in possums in New Zealand, accounted for immigration of susceptible possums into a disease reservoir. However, he modeled immigration as fixed and unaffected by management. Bicknell, Wilen, and Howitt, also focusing on possums in New Zealand, developed a model that incorporates simple density-dependent net migration. This allowed the authors to account for endogenous immigration when deriving optimal culling strategies.
Resumo:
The spread of infectious disease among and between wild and domesticated animals has become a major problem worldwide. Upon analyzing the dynamics of wildlife growth and infection when the diseased animals cannot be identified separately from healthy wildlife prior to the kill, we find that harvest-based strategies alone have no impact on disease transmission. Other controls that directly influence disease transmission and/or mortality are required. Next, we analyze the socially optimal management of infectious wildlife. The model is applied to the problem of bovine tuberculosis among Michigan white-tailed deer, with non-selective harvests and supplemental feeding being the control variables. Using a two-state linear control model, we find a two-dimensional singular path is optimal (as opposed to a more conventional bang-bang solution) as part of a cycle that results in the disease remaining endemic in the wildlife. This result follows from non-selective harvesting and intermittent wildlife productivity gains from supplemental feeding.
Resumo:
Landowners and agencies have expressed difficulty finding hunters willing to harvest the female portion of the ungulate populations, and likewise, hunters have expressed difficulty achieving access to private lands. Since 2003, the Montana “DoeCowHunt” website (www.doecowhunt.montana.edu) has provided an avenue to improve hunter-landowner contact and wild ungulate population management. A product of Montana State University Extension Wildlife Program, this website provides a means for hunters and landowners in Montana to contact each other by listing contact information (email address, physical address, and telephone number) for the purpose of harvesting antlerless ungulates. In the first year over 10,000 users visited the site. Of those who actually registered, 11 were landowners and 1334 were hunters. An evaluation survey resulted in a 40% response rate. The survey indicated the average registered landowner had 20 hunter contacts. Many landowners contacted hunters through use of the website but did not register or list their contact information on the site.
Resumo:
We hypothesized that an exclusion fence could be devised to capitalize on traction limitations of the hooves of white-tailed deer (Odocoileus virginianus). Hexagonal plots (9.8 m wide) enclosed by a 2.4 m field fence with two openings (4.9 m) were established. Data were collected daily on consumption of corn provided (2.27 kg) and events recorded by infrared monitors (IR) for treatment and control sites. Five-day treatment periods consisted of test panels (4.9 m x 2.4 m) placed in plot openings at 0°, 5° and 10° slopes, and lubricant applied at the 10° slope. Deer consumed all corn provided at control sites. At the 10° slope, daily corn consumption decreased (1.50 kg ± 0.26, p < .01), and IR events were lower (p < .01) at treatment sites (23.6 ± 3.2) compared to controls (50.3 ± 9.6). With the addition of a lubricant, corn consumption decreased further (p < .001) to 0.17 kg ± 0.03, and IR recorded events were lower (p < .001) at treatment sites (6.58 ± 0.89) compared to controls (44.8 ± 3.1). Results of this study indicate that traction limitation of the hoof can be exploited.
Resumo:
The Wildlife Master (WM) Program in Colorado was modeled after the highly successful Master Gardener volunteer program. In 10 highly populated suburban counties with large rural areas surrounding the Denver Metro Area, Colorado State University (CSU) Cooperative Extension Natural Resources agents train, supervise and manage these volunteers in the identification, referral, and resolution of wildlife damage issues. High quality, research-based training is provided by university faculty and other professionals in public health, animal damage control, wildlife management and animal behavior. Inquiries are responded to mainly via telephone. Calls by concerned residents are forwarded to WMs who provide general information about human-wildlife conflicts and possible ways to resolve complaints. Each volunteer serves a minimum of 14 days on phone duty annually, calling in from a remote location to a voice mail system from which phone messages can be conveniently retrieved. Response time per call is generally less than 24 hours. During 2004, more than 2,000 phone calls, e-mail messages and walk-in requests for assistance were fielded by 100 cooperative extension WMs. Calls fielded by volunteers in one county increased five-fold during the past five years, from 100 calls to over 500 calls annually. Valued at the rate of approximately $18.00 per volunteer hour, the leveraged value of each WM was about $450 in 2005, based on 25 hours of service and training. The estimated value of the program to Colorado in 2004 was over $45,000 of in-kind service, or about one full-time equivalent faculty member. This paper describes components of Colorado’s WM Program, with guides to the set-up of similar programs in other states.
Resumo:
ABSTRACT: A survey of Extension Wildlife Specialists in the U.S. provided a basis for estimating the magnitude of urban wildlife damage and control in this country. Response to the 9-question mail questionnaire was good (76 percent) following the single mailing to all Extension Wildlife Specialists or people in similar positions listed in the national directory. The majority of questions were answered based upon the experiences and best estimates of these specialists for the interval October 1986-September 1987. Specialists had difficulty providing estimates of damage and costs of prevention and control; 57 percent were not able to provide any data on these topics. Several of the questions dealt with attitudes of people requesting urban wildlife information and/or assistance and wide ranges of responses were received to most of these questions. Most people (78 percent) appeared willing to implement prevention/control measures recommended by these specialists, more than half (61 percent) wanted the animal handled/removed by someone else, and only about 40 percent wanted the damage stopped regardless of cost. Also, slightly over half (55 percent) of clientele represented did not want the offending animal harmed in any way. These results were highly variable from state to state. Several differences were noted in overall responses regarding urban wildlife species. Requests for information were received most frequently for bats and snakes, but both of these groups of animals ranked very low in terms of actual damage reported. The most frequently mentioned groups of animals causing damage in urban areas were roosting birds (including pigeons, starlings, and sparrows), woodpeckers (especially flickers), tree squirrels, bats, and moles. In terms of actual dollar values of damage done, white-tailed deer and pocket gophers apparently caused the most estimated damage. Due to these differences, it is necessary to know which criteria are being used to make an assessment of the relative importance of animal damage control problems. Techniques for controlling urban wildlife damage, such as exclusion, live-trapping, repellents, and poisons, are compared and discussed in some detail in this paper. As urbanization occurs across the nation, concerns about urban wildlife damage will continue; in most cases, we can and will live among these creatures.