7 resultados para Weed chemical control
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
As you can see from the general tenor of the printed program for this seminar, I am in the unenviable position of trying to discourage you from certain types of chemical control; but my assigned topic "Side Effects of Persistent Toxicants," implies that mission. However, my remarks may be somewhat anticlimax at this time, because it is now generally conceded that we need to reevaluate certain chemicals in control work and to restrict or severely curtail use of those that per¬sist for long periods in the environment. So let me detail my reasons for a somewhat negative attitude toward the use of the persistent hydrocarbons from my experience with the effects of these materials on birds. But first a few words of caution about control work in general, which so often disrupts natural processes and leads to new and unforseen difficulties. As an example, I think of the irruption of mice in the Klamath valley in northern California and southern Oregon in the late '50's. Intensive predator control, particularly of coyotes, but also of hawks and owls, was followed by a severe outbreak of mice in the spring of 1958. To combat the plague of mice, poisoned bait (1080 and zinc phosphide) was widely distributed in an area used by 500,000 waterfowl each spring. More than 3,000 geese were poisoned, so driv¬ing parties were organized to keep the geese off the treated fields. Here it seems conceivable that the whole chain of costly events--cost of the original and probably unnecessary predator control, economic loss to crops from the mouse outbreak, another poisoning campaign to combat the mice, loss of valuable waterfowl resources, and man-hours involved in flushing geese from the fields--might have been averted by a policy of not interfering with the original predator-prey relationship. This points to a dilemma we always face. (We create deplorable situations by clumsy interference with natural processes, then seek artificial cures to correct our mistakes.) For example, we spend millions of dollars in seeking cures for cancer, but do little or nothing about restricting the use of known or suspected carcinogens such as nicotine and DDT.
Resumo:
Crop depredation by red-winged blackbirds (Agelaius phoeniceus) causes serious economic losses to agricultural crops each year in both Canada and the United States. The concentration of vulnerable, monocultural crops, particularly corn, during periods when large flocks of blackbirds congregate in roosting areas prior to migration has invariably led to heavy feeding pressure (Stone et al., 1972; Wiens and Dyer, 1975; Tyler et al., 1978). Efforts to reduce damage levels by mechanical and chemical dispersal agents have been largely unsuccessful, at least in terms of a long-term solution to the problem. Recently, the lethal control of blackbird populations using surfactants has been proposed. However, the potential repercussions of the removal of substantial numbers of birds from northern breeding areas are virtually unknown (Robertson et al., 1978). Much of the research dealing with the feeding ecology of red-winged blackbirds has been limited to fall and winter periods when large aggregations of birds are actively involved in crop depredation (Goddad, 1969; Williams, 1976; Dolbeer et al., 1978) or pose a potential health hazard (Monroe and Cronholm, 1976). However, what is not known is the degree to which the removal of deleterious weed seed and insect pests cited in several studies (Bird and Smith, 1964; Mott et al., 1972; Robertson et al., 1978) might be of potential value to agriculture. The issue of whether the benefits derived from redwing foraging compensate for the negative aspects associated with crop depredation and health hazards remains largely unresolved. The present study attempted to evaluate the pest status of this species using diet information derived from food habits analysis conducted during the residency of red- winged blackbirds in a northern breeding area. By determining how the feeding ecology of red-winged blackbirds varies on a seasonal basis, among different breeding habitats and between sexes, we hoped to determine more realistically which segments of the population might be responsible for the greatest benefits or detriments and, thereby, more accurately evaluate the economic impact of the species as a whole. To achieve this aim, the study provides an accurate description of the common insects and weed pests utilized by redwings. By determining the relative proportions of those items known to be detrimental, we hoped to illustrate, at least qualitatively, the degree to which redwing foraging is comprised of both beneficial and harmful components.
Resumo:
The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.
Resumo:
Every fall millions of blackbirds come down the Mississippi Flyway to return to their winter roosts in Arkansas, Louisiana, and East Texas. When these roosts are located in urban areas, public pressure makes the more common chemical means of control impractical. A less destructive and more permanent method of control was sought. At Rice University, in Houston, Texas, there has been a blackbird roost of various sizes and durations since 1956. For the past two years we have had the opportunity both to study roosting blackbird biology and experiment with habitat alteration as a control method. This particular report concentrates on the results and interpretation of the tree- trimming program initiated in August 1974. The birds involved are primarily Brown-headed Cowbirds (Molothrus ater), along with Starlings (sturnus vulgaris), Common and Great-tailed Grackles (Quiscalus quiscula and Cassidix mexicanus), Red-winged Blackbirds (Agelaius phoenicus) and Robins (Turdus migratorius). The campus comprises 121 ha and was planted with live oaks (Quercus virginiana) in 1912. These trees retain their foliage throughout the winter and now form a closed canopy over some 5-6 ha. In the 60s and early 70s most of the birds that came to Houston for the winter roosted in a 64-ha woodlot 10 km north of campus. In January 1970, the U.S. Fish and Wildlife Roosting Survey reported one million birds at this site we call the North Loop. Fifteen- thousand birds were estimated at Rice.
Resumo:
Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.
Resumo:
In the first paper presented to you today by Dr. Spencer, an expert in the Animal Biology field and an official authority at the same time, you heard about the requirements imposed on a chemical in order to pass the different official hurdles before it ever will be accepted as a proven tool in wildlife management. Many characteristics have to be known and highly sophisticated tests have to be run. In many instances the governmental agency maintains its own screening, testing or analytical programs according to standard procedures. It would be impossible, however, for economic and time reasons to work out all the data necessary for themselves. They, therefore, depend largely on the information furnished by the individual industry which naturally has to be established as conscientiously as possible. This, among other things, Dr. Spencer has made very clear; and this is also what makes quite a few headaches for the individual industry, but I am certainly not speaking only for myself in saying that Industry fully realizes this important role in developing materials for vertebrate control and the responsibilities lying in this. This type of work - better to say cooperative work with the official institutions - is, however, only one part and for the most of it, the smallest part of work which Industry pays to the development of compounds for pest control. It actually refers only to those very few compounds which are known to be effective. But how to get to know about their properties in the first place? How does Industry make the selection from the many thousands of compounds synthesized each year? This, by far, creates the biggest problems, at least from the scientific and technical standpoint. Let us rest here for a short while and think about the possible ways of screening and selecting effective compounds. Basically there are two different ways. One is the empirical way of screening as big a number of compounds as possible under the supposition that with the number of incidences the chances for a "hit" increase, too. You can also call this type of approach the statistical or the analytical one, the mass screening of new, mostly unknown candidate materials. This type of testing can only be performed by a producer of many new materials,that means by big industries. It requires a tremendous investment in personnel, time and equipment and is based on highly simplified but indicative test methods, the results of which would have to be reliable and representative for practical purposes. The other extreme is the intellectual way of theorizing effective chemical configurations. Defenders of this method claim to now or later be able to predict biological effectiveness on the basis of the chemical structure or certain groups in it. Certain pre-experience should be necessary, that means knowledge of the importance of certain molecular requirements, then the detection of new and effective complete molecules is a matter of coordination to be performed by smart people or computers. You can also call this method the synthetical or coordinative method.
Resumo:
Certain fungi have been found frequently as saprophytes in areas containing large amounts of bird excreta. These fungi have the ability to survive, multiply, and cause disease once they have entered a host. Two of these are Crypto-coccus neoformans and Histoplasma capsulatum. Both may easily become airborne and be disseminated throughout an area by the prevailing winds. C. neo-formans is commonly isolated from the excreta of pigeon habitats, and in turn has been associated with clinical cases of cryptococcosis, while blackbird roosts, harboring H. capsulatum, have been responsible for several outbreaks of histoplasmosis. When either of these fungi have become established in nature, the sites may become foci for infection and epidemics may occur if the sites are disturbed. This has led to investigation of these organisms with respect to: 1) the frequency of isolation of H. capsulatum from the soil beneath blackbird roosts in a histoplasmosis endemic area; 2) the infectivity of undisturbed roosts positive for H. capsulatum; and 3) the effectiveness of chemical decontamination of areas containing C. neoformans or H. capsulatum.