5 resultados para Vehicle routing problem
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Network survivability is one of the most important issues in the design of optical WDM networks. In this work we study the problem of survivable routing of a virtual topology on a physical topology with Shared Risk Link Groups (SRLG). The survivable virtual topology routing problem against single-link failures in the physical topology is proved to be NP-complete in [1]. We prove that survivable virtual topology routing problem against SRLG/node failures is also NP-complete. We present an improved integer linear programming (ILP) formulation (in comparison to [1]) for computing the survivable routing under SRLG/node failures. Using an ILP solver, we computed the survivable virtual topology routing against link and SRLG failures for small and medium sized networks efficiently. As even our improved ILP formulation becomes intractable for large networks, we present a congestion-based heuristic and a tabu search heuristic (which uses the congestion-based heuristic solution as the initial solution) for computing survivable routing of a virtual topology. Our experimental results show that tabu search heuristic coupled with the congestion based heuristic (used as initial solution) provides fast and near-optimal solutions.
Resumo:
Traffic grooming in optical WDM mesh networks is a two-layer routing problem to effectively pack low-rate connections onto high-rate lightpaths, which, in turn, are established on wavelength links. In this work, we employ the rerouting approach to improve the network throughput under the dynamic traffic model. We propose two rerouting schemes, rerouting at lightpath level (RRAL) and rerouting at connection level (RRAC). A qualitative comparison is made between RRAL and RRAC. We also propose the critical-wavelength-avoiding one-lightpath-limited (CWA-1L) and critical-lightpath-avoiding one-connection-limited (CLA-1C) rerouting heuristics, which are based on the two rerouting schemes respectively. Simulation results show that rerouting reduces the connection blocking probability significantly.
Resumo:
Translucent wavelength-division multiplexing optical networks use sparse placement of regenerators to overcome physical impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks at a much less cost. In previous studies, we addressed the placement of regenerators based on static schemes, allowing for only a limited number of regenerators at fixed locations. This paper furthers those studies by proposing a dynamic resource allocation and dynamic routing scheme to operate translucent networks. This scheme is realized through dynamically sharing regeneration resources, including transmitters, receivers, and electronic interfaces, between regeneration and access functions under a multidomain hierarchical translucent network model. An intradomain routing algorithm, which takes into consideration optical-layer constraints as well as dynamic allocation of regeneration resources, is developed to address the problem of translucent dynamic routing in a single routing domain. Network performance in terms of blocking probability, resource utilization, and running times under different resource allocation and routing schemes is measured through simulation experiments.
Resumo:
Routing and wavelength assignment (RWA) is an important problem that arises in wavelength division multiplexed (WDM) optical networks. Previous studies have solved many variations of this problem under the assumption of perfect conditions regarding the power of a signal. In this paper, we investigate this problem while allowing for degradation of routed signals by components such as taps, multiplexers, and fiber links. We assume that optical amplifiers are preplaced. We investigate the problem of routing the maximum number of connections while maintaining proper power levels. The problem is formulated as a mixed-integer nonlinear program and two-phase hybrid solution approaches employing two different heuristics are developed
Resumo:
In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.