3 resultados para Upstream

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20min length and used numerous radiocarbon ages measured by accelerator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210Pb and 137Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1984 and 1985 seasonal changes in phytoplankton were studied in a system of three lakes in Loch Vale, Rocky Mountain National Park, Colorado. Three periods were evident: (1) A spring bloom, during snowmelt, of the planktonic diatom Asterionella Formosa, (2) a mid- summer period of minimal algal abundance, and (3) a fall bloom of the blue-green alga Oscillatoria limnetica. Seasonal phytoplankton dynamics in these lakes are controlled partially by the rapid flushing rate during snowmelt and the transport of phytoplankton from the highest lake to the lower lakes by the stream, Icy Brook. During snowmelt, the A. formosa population in the most downstream lake has a net rate of increase of 0.34 d-1, which is calculated from the flushing rate and from the A. formosa abundance in the inflow from the upstream lake and in the downstream lake. Measurement of photosynthetic rates at different depths during the three periods confirmed the rapid growth of A. formosa during the spring. The decline in A. formosa after snowmelt may be related to grazing by developing zooplankton populations. The possible importance of the seasonal variations in nitrate concentrations were evaluated in situ enrichment experiments. For A. formosa and O. limnetica populations, growth stimulation resulted from 8- or 16-micromolar amendments of calcium nitrate and sulfuric acid, but the reason for this stimulation could not be determined from these experiments.