4 resultados para University of California, Berkeley. French

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few Nebraskans are as devoted to the University of Nebraska as Mark Gustafson. Driven by his belief that a strong university is key to a strong Nebraska economy, Mark is an advocate for the university in the local, state, and national arenas. He is a Nebraska delegate to the Council for Agricultural, Research, Extension, and Teaching, a national advocacy organization for higher education. Since 1991, he's been a member of Agriculture Builders of Nebraska, Inc., which supports UNL's Institute of Agriculture and Natural Resources, as well as the entire University, and has served three terms as president. He has served on the advisory councils for the UNL chancellor and the NU president and served on UNL's Future Nebraska Taskforce. He holds baccalaureate and master's degrees from UNL and a Ph.D. from the University of California-Berkeley. When he's not volunteering his time, Mark operates the family farm near Mead. He and his wife, Dianne, are the parents of two children - Christopher, a UNL alumnus, and Anneke, a UNL junior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few Nebraskans are as devoted to the University of Nebraska as Mark Gustafson. Driven by his belief that a strong university is key to a strong Nebraska economy, Mark is an advocate for the university in the local, state, and national arenas. He is a Nebraska delegate to the Council for Agricultural, Research, Extension, and Teaching, a national advocacy organization for higher education. Since 1991, he's been a member of Agriculture Builders of Nebraska, Inc., which supports UNL's Institute of Agriculture and Natural Resources, as well as the entire University, and has served three terms as president. He has served on the advisory councils for the UNL chancellor and the NU president and served on UNL's Future Nebraska Taskforce. He holds baccalaureate and master's degrees from UNL and a Ph.D. from the University of California-Berkeley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution records of the past 2000 yr are compared in a north–south transect (28° N to 24° N) of three cores from the eastern slopes of the Guaymas, Carmen, and Pescadero Basins of the Gulf of California (hereafter referred to as the “Gulf”). Evenly-spaced samples from the varved sediments in each core allow sample resolution ranging from ∼ 16 to ∼ 37 yr. Diatoms and silicoflagellates capture the seasonal variation between a late fall to early spring period of high biosiliceous productivity, that is driven by northwest winds, and a summer period of warmer, more stratified waters during which these winds slacken and/or reverse direction (monsoonal flow). As these winds decrease, tropical waters enter the Gulf and spread northward. Individual samples represent a composite of 7 to 23 yr of deposition and are assumed to record the relative dominance of the winter vs. summer floral components. Intervals of enhanced summer incursion of tropical waters, alternating with periods of increased late fall to early spring biosiliceous productivity are recorded in all three cores. Regularly spaced cycles (∼ 100 yr duration) of Octactis pulchra, a silicoflagellate proxy for lower SST and high productivity, and Azpeitia nodulifera, a tropical diatom, occur between ∼ A.D. 400 and ∼ 1700 in the more nearshore Carmen Basin core, NH01-21 (26.3° N), suggesting a possible solar influence on coastal upwelling. Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity. A new silicoflagellate species, Dictyocha franshepardii Bukry, is described and illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.