5 resultados para Underwater robotics

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bullets for announcement of the nearly $2.5 million grant to 4-H from the National Science Foundation to take its robotics curriculum national.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blind river dolphin (Platanista gangetica), first written about by Pliny the Elder in A.D. 72, was found (10 November 1968) to be the first known side-swimming cetacean. The rudimentary eye lacks the lens, but anatomical evidence suggests that the eye may serve as a light sensor. The underwater sound emissions of this species, although similar to those of the Amazon River dolphin (Inia geoffrensis), appear to be produced constantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decreasing number of women who are graduating in the Science, Technology, Engineering and Mathematics (STEM) fields continues to be a major concern. Despite national support in the form of grants provided by National Science Foundation, National Center for Information and Technology and legislation passed such as the Deficit Reduction Act of 2005 that encourages women to enter the STEM fields, the number of women actually graduating in these fields is surprisingly low. This research study focuses on a robotics competition and its ability to engage female adolescents in STEM curricula. Data have been collected to help explain why young women are reticent to take technology or engineering type courses in high school and college. Factors that have been described include attitudes, parental support, social aspects, peer pressure, and lack of role models. Often these courses were thought to have masculine and “nerdy” overtones. The courses were usually majority male enrollments and appeared to be very competitive. With more female adolescents engaging in this type of competitive atmosphere, this study gathered information to discover what about the competition appealed to these young women. Focus groups were used to gather information from adolescent females who were participating in the First Lego League (FLL) and CEENBoT competitions. What enticed them to participate in a curriculum that data demonstrated many of their peers avoided? FLL and CEENBoT are robotics programs based on curricula that are taught in afterschool programs in non-formal environments. These programs culminate in a very large robotics competition. My research questions included: What are the factors that encouraged participants to participate in the robotics competition? What was the original enticement to the FLL and CEENBoT programs? What will make participants want to come back and what are the participants’ plans for the future? My research mirrored data of previous findings such as lack of role models, the need for parental support, social stigmatisms and peer pressure are still major factors that determine whether adolescent females seek out STEM activities. An interesting finding, which was an exception to previous findings, was these female adolescents enjoyed the challenge of the competition. The informal learning environments encouraged an atmosphere of social engagement and cooperative learning. Many volunteers that led the afterschool programs were women (role models) and a majority of parents showed support by accommodating an afterschool situation. The young women that were engaged in the competition noted it was a friendly competition, but they were all there to win. All who participated in the competition had a similar learning environment: competitive but cooperative. Further research is needed to determine if it is the learning environment that lures adolescent females to the program and entices them to continue in the STEM fields or if it is the competitive aspect of the culminating activity. Advisors: James King and Allen Steckelberg