1 resultado para Under the Limit
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Research Repository at Institute of Developing Economies (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (19)
- Archive of European Integration (154)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (3)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biodiversity Heritage Library, United States (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (4)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (13)
- Carolina Law Scholarship Repository (2)
- CentAUR: Central Archive University of Reading - UK (19)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (17)
- Cornell: DigitalCommons@ILR (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Knowledge Repository of Central Drug Research Institute (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (4)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (20)
- Instituto Politécnico do Porto, Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (20)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (53)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (370)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In active learning, a machine learning algorithmis given an unlabeled set of examples U, and is allowed to request labels for a relatively small subset of U to use for training. The goal is then to judiciously choose which examples in U to have labeled in order to optimize some performance criterion, e.g. classification accuracy. We study how active learning affects AUC. We examine two existing algorithms from the literature and present our own active learning algorithms designed to maximize the AUC of the hypothesis. One of our algorithms was consistently the top performer, and Closest Sampling from the literature often came in second behind it. When good posterior probability estimates were available, our heuristics were by far the best.