22 resultados para Tuberculosis in animals.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Bovine tuberculosis (BTB) was introduced into Swedish farmed deer herds in 1987. Epidemiological investigations showed that 10 deer herds had become infected (July 1994) and a common source of infection, a consignment of 168 imported farmed fallow deer, was identified (I). As trace-back of all imported and in-contact deer was not possible, a control program, based on tuberculin testing, was implemented in July 1994. As Sweden has been free from BTB since 1958, few practicing veterinarians had experience in tuberculin testing. In this test, result relies on the skill, experience and conscientiousness of the testing veterinarian. Deficiencies in performing the test may adversely affect the test results and thereby compromise a control program. Quality indicators may identify possible deficiencies in testing procedures. For that purpose, reference values for measured skin fold thickness (prior to injection of the tuberculin) were established (II) suggested to be used mainly by less experienced veterinarians to identify unexpected measurements. Furthermore, the within-veterinarian variation of the measured skin fold thickness was estimated by fitting general linear models to data (skin fold measurements) (III). The mean square error was used as an estimator of the within-veterinarian variation. Using this method, four (6%) veterinarians were considered to have unexpectedly large variation in measurements. In certain large extensive deer farms, where mustering of all animals was difficult, meat inspection was suggested as an alternative to tuberculin testing. The efficiency of such a control was estimated in paper IV and V. A Reed Frost model was fitted to data from seven BTB-infected deer herds and the spread of infection was estimated (< 0.6 effective contacts per deer and year) (IV). These results were used to model the efficiency of meat inspection in an average extensive Swedish deer herd. Given a 20% annual slaughter and meat inspection, the model predicted that BTB would be either detected or eliminated in most herds (90%) 15 years after introduction of one infected deer. In 2003, an alternative control for BTB in extensive Swedish deer herds, based on the results of paper V, was implemented.
Resumo:
Using the isolation of Mycobacterium bovis as the reference standard, this study evaluated the sensitivity, specificity and kappa statistic of gross pathology (abattoir postmortem inspection), histopathology, and parallel or series combinations of the two for the diagnosis of tuberculosis in 430 elk and red deer. Two histopathology interpretations were evaluated: histopathology I, where the presence of lesions compatible with tuberculosis was considered positive, and histopathology II, where lesions compatible with tuberculosis or a select group of additional possible diagnoses were considered positive. In the 73 animals from which M. bovis was isolated, gross lesions of tuberculosis were most often in the lung (48), the retropharyngeal lymph nodes (36), the mesenteric lymph nodes (35), and the mediastinal lymph nodes (16). Other mycobacterial isolates included: 11 M. paratuberculosis, 11 M. avium, and 28 rapidly growing species or M. terrae complex. The sensitivity estimates of gross pathology and histopathology I were 93% (95% confidence limits [CL] 84,97%) and 88% [CL 77,94%], respectively, and the specificity of both was 89% [CL 85,92%]). The sensitivity and specificity of histopathology II were 89% (CL 79,95%) and 77% (CL 72,81%), respectively. The highest sensitivity estimates (93- 95% [CL 84,98%]) were obtained by interpreting gross pathology and histopathology in parallel (where an animal had to be positive on at least one of the two, to be classified as combination positive). The highest specificity estimates (94-95% [CL 91-97%]) were generated when the two tests were interpreted in series (an animal had to be positive on both tests to be classified as combination positive). The presence of gross or microscopic lesions showed moderate to good agreement with the isolation of M. bovis (Kappa = 65-69%). The results show that post-mortem inspection, histopathology and culture do not necessarily recognize the same infected animals and that the spectra of animals identified by the tests overlaps.
Resumo:
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
Resumo:
Tuberculosis, caused by Mycobacterium bovis, was first diagnosed in African buffalo in South Africa’s Kruger National Park in 1990. Over the past 15 years the disease has spread northwards leaving only the most northern buffalo herds unaffected. Evidence suggests that 10 other small and large mammalian species, including large predators, are spillover hosts. Wildlife tuberculosis has also been diagnosed in several adjacent private game reserves and in the Hluhluwe-iMfolozi Park, the third largest game reserve in South Africa. The tuberculosis epidemic has a number of implications, for which the full effect of some might only be seen in the long-term. Potential negative long-term effects on the population dynamics of certain social animal species and the direct threat for the survival of endangered species pose particular problems for wildlife conservationists. On the other hand, the risk of spillover infection to neighboring communal cattle raises concerns about human health at the wildlife–livestock–human interface, not only along the western boundary of Kruger National Park, but also with regards to the joint development of the Greater Limpopo Transfrontier Conservation Area with Zimbabwe and Mozambique. From an economic point of view, wildlife tuberculosis has resulted in national and international trade restrictions for affected species. The lack of diagnostic tools for most species and the absence of an effective vaccine make it currently impossible to contain and control this disease within an infected free-ranging ecosystem. Veterinary researchers and policy-makers have recognized the need to intensify research on this disease and the need to develop tools for control, initially targeting buffalo and lion.
Resumo:
Infectious diseases can bring about population declines and local host extinctions, contributing significantly to the global biodiversity crisis. Nonetheless, studies measuring population-level effects of pathogens in wild host populations are rare, and taxonomically biased toward avian hosts and macroparasitic infections. We investigated the effects of bovine tuberculosis (bTB), caused by the bacterial pathogen Mycobacterium bovis, on African buffalo (Syncerus caffer) at Hluhluwe-iMfolozi Park, South Africa. We tested 1180 buffalo for bTB infection between May 2000 and November 2001. Most infections were mild, confirming the chronic nature of the disease in buffalo. However, our data indicate that bTB affects both adult survival and fecundity. Using an age-structured population model, we demonstrate that the pathogen can reduce population growth rate drastically; yet its effects appear difficult to detect at the population level: bTB causes no conspicuous mass mortalities or fast population declines, nor does it alter host-population age structure significantly. Our models suggest that this syndrome—low detectability coupled with severe impacts on population growth rate and, therefore, resilience—may be characteristic of chronic diseases in large mammals.
Resumo:
In 1975, a wild white-tailed deer infected with bovine tuberculosis was shot in the northeastern Lower Peninsula, Michigan. The shooting of a second infected deer in the same area in 1994 triggered ongoing disease surveillance in the region. By 2002, bovine tuberculosis had been confirmed in 12 Michigan counties: from 449 deer; two elk; 41 non-cervid wildlife; one captive cervid facility and 28 cattle herds. We analyzed geographic spread of disease since the surveillance began and investigated factors influencing the prevalence of disease within the infected area. These analyses reveal that 78 percent of tuberculous deer came from within a 1560 km2 'core' area, within which the prevalence of apparent disease averaged 2.5 percent. Prevalence declined dramatically outside of the core and was an order of magnitude lower 30 km from its boundary. This prevalence gradient was highly significant (P<0.0001) and did not alter over the 6 year surveillance period (P= 0.98). Within the core, deer density and supplemental feeding by hunters were positively and independently correlated with tuberculosis prevalence in deer. Together, these two factors explained 55 percent of the variation in prevalence. We conclude that bovine tuberculosis was already well established in the deer population in 1994, that the infected area has not expanded significantly since that time, and that deer over-abundance and food supplementation have both contributed to ongoing transmission of disease. Managers are currently enforcing prohibitions on deer feeding in the core and are working to lower deer numbers there through increased hunting pressure.
Resumo:
Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer. Design—Cross-sectional study. Animals116 captive white-tailed deer. Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture. Results—Mycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however,M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples. Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence.
Resumo:
India has a third of the world’s tuberculosis cases. Large-scale expansion of a national program in 1998 has allowed for population-based analyses of data from tuberculosis registries. We assessed seasonal trends using quarterly reports from districts with stable tuberculosis control programs (population 115 million). In northern India, tuberculosis diagnoses peaked between April and June, and reached a nadir between October and December, whereas no seasonality was reported in the south. Overall, rates of new smear-positive tuberculosis cases were 57 per 100 000 population in peak seasons versus 46 per 100 000 in trough seasons. General health-seeking behavior artifact was ruled out. Seasonality was highest in paediatric cases, suggesting variation in recent transmission.
Resumo:
A 4.5 yr-old male white-tailed deer (Odocoileus virginianus) killed by a hunter during the 1994 firearm hunting season in northeastern Michigan (USA) had lesions suggestive of tuberculosis and was positive on culture for Mycobacterium bovis the causative agent for bovine tuberculosis. Subsequently, a survey of 354 hunter-harvested white-tailed deer for tuberculosis was conducted in this area from 15 November 1995 through 5 January 1996. Heads and/or lungs from deer were examined grossly and microscopically for lesions suggestive of bovine tuberculosis. Gross lesions suggestive of tuberculosis were seen in 15 deer. Tissues from 16 deer had acid-fast bacilli on histological examination and in 12 cases mycobacterial isolates from lymph nodes and/or lungs were identified as M. bovis. In addition, lymph nodes from 12 deer (11 females and 1 male) without gross or microscopic lesions were pooled into 1 sample from which M. bovis was cultured. Although more male (9) than female (3) deer had bovine tuberculosis infections, this difference was not statistically significant. Mycobacterium bovis culture positive deer ranged in age from 1.5 to 5.5 yr with a mean of 2.7 yr (median 2.5 yr) for males and 3.2 yr (median 3.5 yr) for females. This appears to be the first epidemic occurrence of M. bovis in free-ranging cervids in North America. A combination of environmental (high deer density and poor quality habit) and management-related factors (extensive supplemental feeding) may be responsible for this epizootic.
Resumo:
A survey of 41 mule deer (Odocolleus hemionus) and three white-tailed deer (O. virginianus) for bovine tuberculosis was conducted on a Montana (USA) cattle ranch from 2 November 1993 through January 1994. Gross and microscopic lesions typical of tuberculosis were present in tonsil and lymph nodes of the head, thorax, and abdomen of one adult female mule deer. Additionally, a single microgranuloma considered morphologically suggestive of tuberculosis was present in one lymph node of the head of a second mule deer. Mycobacterial isolates from lymph nodes of the head and thorax of the first deer were identified as Mycobacterium bovis.
Recommendations for Elimination of Bovine Tuberculosis in Free-Ranging White-Tailed Deer in Michigan
Resumo:
A significant infection rate of bovine TB in the deer population of the northeastern lower peninsula poses a potential risk to several important values including public health, United States Department of Agriculture (U.S.D.A.) TB-free accreditation for Michigan cattle, wildlife health, wildlife-related recreation and tourism and economic stability in several sectors. A risk assessment study by the U.S. D.A. Centers for Epidemiology and Animal Health (Fort Collins, CO) predicted that if no changes were made in the management of the affected free-ranging deer population, the TB prevalence (compared to the current prevalence of 2.3%). Although the current annual risk of TB transfer to cattle in the affected area is .I%, the report estimated a 12% cumulative risk that at least one head of cattle would become infected over the next 25 years if no changes are made in deer and/or cattle management.
Resumo:
Since 1994, the state of Michigan has recognized a problem with bovine tuberculosis (TB), caused by Mycobacterium bovis, in wild white-tailed deer from a 12-county area in northeastern Lower Michigan. A total of 65,000 free-ranging deer have been tested, and 340 have been found to be positive for M. bovis. The disease has been found in other wildlife species, and, in 1998, in domestic cattle, where to date 13 beef cattle and 2 dairy cattle herds have been diagnosed with bovine TB. Unfortunately, the situation is unique in that there have never been reports of self-sustaining bovine TB in a wild, free-ranging cervid population in North America. Scientists, biologists, epidemiologists, and veterinarians who have studied this situation have concluded that the most logical theory is that high deer densities and the focal concentration caused by baiting (the practice of hunting deer over feed) and feeding are the factors most likely responsible for the establishment of self-sustaining TB in free-ranging Michigan deer. Baiting and feeding have been banned since 1998 in counties where the disease has been found. In addition, the deer herd has been reduced by 50% in the endemic area with the use of unlimited antlerless permits. The measures of apparent TB prevalence have been decreased by half since 1997, providing hopeful preliminary evidence that eradication strategies are succeeding.
Resumo:
The State of Michigan is striving to eliminate bovine tuberculosis (Tb) infection among free-ranging white-tailed deer in the northeastern Lower Peninsula of the state. Aggressive reduction in the overall deer population abundance may help to further reduce TB prevalence, but this course of action is unacceptable to many hunters and landowners. Targeted culling of sick deer would likely be far more acceptable to these stakeholders, so in the winter of 2003 the Michigan Department of Natural Resources pilot-trialed a new strategy based on live-trapping and Tb-testing of wild deer. The field study was conducted in a township with relatively high TB prevalence within Deer Management Unit 452 in the northeastern Lower Peninsula. Over a 2-month trapping period, 119 individual deer were live-trapped, blood sampled, fitted with a radio-collar, and released. A total of 31 of these deer were subsequently classified as Tb-suspect by at least one of five blood tests employed (however there was a low level of agreement among tests). A delay in testing meant that only six of these suspect deer were culled by sharpshooters before pre-programmed release of their radio-collars, after which they could no longer be located. Mycobacterium bovis was cultured from one of these six suspect deer; the other five were negative on culture. All target deer were located to within shooting range with 1 – 2 days of effort, and all the radio-collars on the apparently-healthy deer dropped off after the intended 90-day interval, and were thereafter recovered for re-use. There was considerable support for this pilot project among hunters, farmers, state and federal agriculture agencies, the media and the general public, and so we recommend that further field trials be undertaken using this technique. The initial focus of these trials should be on improving the efficacy and reliability of the blood testing procedure.
Resumo:
We describe the distribution of tuberculosis-like lesions (TBL) in wild boar (Sus scrofa) and red deer (Cervus elaphus) in Spain. Animals with TBL were confirmed in 84.21% of mixed populations (n = 57) of red deer and wild boar and in 75% of populations of wild boar alone (n = 8) in central and southern Spain (core area). The prevalence of TBL declined towards the periphery of this region. In the core area, the prevalence ranged up to 100% in local populations of wild boar (mean estate prevalence 42.51%) and up to 50% in red deer (mean estate prevalence 13.70%). We carried out exploratory statistical analyses to describe the epidemiology of TBL in both species throughout the core area. Prevalence of TBL increased with age in both species. Wild boar and red deer mean TBL prevalence at the estate level were positively associated, and lesion scores were consistently higher in wild boars than in red deer. The wild boar prevalence of TBL in wild boar did not differ between populations that were or were not cohabiting with red deer. Amongst the wild boars with TBL, 61.19% presented generalized lesions, and the proportion of generalized cases was similar between sex and age classes. In red deer, 57.14% of TBL-positive individuals presented generalized lesions, and the percentage of generalized cases increased with age class, but did not differ between the sexes. These results highlight the potential importance of wild boar and red deer in the maintenance of tuberculosis in south central Spain.
Resumo:
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.