5 resultados para Tower of Winds
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Lessons from around the world; What does it matter about early childhood education? Why the controversy about public support for early childhood education? What process or system should be used to determine what works in early education? Can the same process be used to improve services? What is the role of government? Alternatives: 1. Consumers should determine… (What happens when private choices drive the market for early childhood services?) Observed quality of care in four Midwestern states; Parent data: “All things considered, how would you grade the quality of the care your child is receiving from his/her current caregiver?” Role of government What is a Quality Rating System? Ten states have implemented statewide systems (e.g. Colorado, Kentucky, Oklahoma, North Carolina) Findings 2. Objective science should determine… Firm findings from empirical research 3. Something else is needed: Some differences between Italian and American models. Teacher action research (and documentation) from a Reggio-inspired preschool in South Korea by Misuk Kim. Teacher Action Research at the Ruth Staples CDL. Can we now answer our opening questions? What process or system should be used to determine what is best for young children? Can the same process be used to improve the quality of services? Conclusions: The free market does not work well to determine quality in early education and care; Licensing, accreditation, and quality rating systems can help improve the market; Empirical research is useful for measuring what works; Teacher action research (reflective practice) is necessary for fostering continuous quality improvement. The tower of quality.
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions
Resumo:
High-resolution records of the past 2000 yr are compared in a north–south transect (28° N to 24° N) of three cores from the eastern slopes of the Guaymas, Carmen, and Pescadero Basins of the Gulf of California (hereafter referred to as the “Gulf”). Evenly-spaced samples from the varved sediments in each core allow sample resolution ranging from ∼ 16 to ∼ 37 yr. Diatoms and silicoflagellates capture the seasonal variation between a late fall to early spring period of high biosiliceous productivity, that is driven by northwest winds, and a summer period of warmer, more stratified waters during which these winds slacken and/or reverse direction (monsoonal flow). As these winds decrease, tropical waters enter the Gulf and spread northward. Individual samples represent a composite of 7 to 23 yr of deposition and are assumed to record the relative dominance of the winter vs. summer floral components. Intervals of enhanced summer incursion of tropical waters, alternating with periods of increased late fall to early spring biosiliceous productivity are recorded in all three cores. Regularly spaced cycles (∼ 100 yr duration) of Octactis pulchra, a silicoflagellate proxy for lower SST and high productivity, and Azpeitia nodulifera, a tropical diatom, occur between ∼ A.D. 400 and ∼ 1700 in the more nearshore Carmen Basin core, NH01-21 (26.3° N), suggesting a possible solar influence on coastal upwelling. Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity. A new silicoflagellate species, Dictyocha franshepardii Bukry, is described and illustrated.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
Certain fungi have been found frequently as saprophytes in areas containing large amounts of bird excreta. These fungi have the ability to survive, multiply, and cause disease once they have entered a host. Two of these are Crypto-coccus neoformans and Histoplasma capsulatum. Both may easily become airborne and be disseminated throughout an area by the prevailing winds. C. neo-formans is commonly isolated from the excreta of pigeon habitats, and in turn has been associated with clinical cases of cryptococcosis, while blackbird roosts, harboring H. capsulatum, have been responsible for several outbreaks of histoplasmosis. When either of these fungi have become established in nature, the sites may become foci for infection and epidemics may occur if the sites are disturbed. This has led to investigation of these organisms with respect to: 1) the frequency of isolation of H. capsulatum from the soil beneath blackbird roosts in a histoplasmosis endemic area; 2) the infectivity of undisturbed roosts positive for H. capsulatum; and 3) the effectiveness of chemical decontamination of areas containing C. neoformans or H. capsulatum.