2 resultados para Time in the peak
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
We report Phrixocephalus cincinnatus, a pennellid copepod infecting the eyes of flatfishes, from a single specimen of rex sole, Glyptocephalus zachirus, for the first time. In the typical host, the arrowtooth flounder, Atherestes stomias, the parasite occurred commonly in sampled populations from the Broughton Archipelago in British Columbia, infected primarily the right eye of the flounder, and on only one occasion presented more than two parasites per eye. The copepod attached to the choroid layer and ramified throughout the posterior compartment of the eye, resulting in the disruption of the retina and probably impairing host vision. Inflammation and hyperplasia progressed to necrosis and proliferation of connective tissue, resulting in the total destruction of the eye.
Resumo:
The abundance of harbor seals (Phoca vitulina richardii) has declined in recent decades at several Alaska locations. The causes of these declines are unknown, but there is concern about the status of the populations, especially in the Gulf of Alaska. To assess the status of harbor seals in the Gulf of Alaska, we conducted aerial surveys of seals on their haul-out sites in August-September 1996. Many factors influence the propensity of seals to haul out, including tides, weather, time of day, and time of year. Because these “covariates” cannot simultaneously be controlled through survey design, we used a regression model to adjust the counts to an estimate of the number of seals that would have been ashore during a hypothetical survey conducted under ideal conditions for hauling out. The regression, a generalized additive model, not only provided an adjustment for the covariates, but also confirmed the nature and shape of the covariate effects on haul-out behavior. The number of seals hauled out was greatest at the beginning of the surveys (mid-August). There was a broad daily peak from about 1100-1400 local solar time. The greatest numbers were hauled out at low tide on terrestrial sites. Tidal state made little difference in the numbers hauled out on glacial ice, where the area available to seals did not fluctuate with the tide. Adjusting the survey counts to the ideal state for each covariate produced an estimate of 30,035 seals, about 1.8 times the total of the unadjusted counts (16,355 seals). To the adjusted count, we applied a correction factor of 1.198 from a separate study of two haul-out sites elsewhere in Alaska, to produce a total abundance estimate of 35,981 (SE 1,833). This estimate accounts both for the effect of covariates on survey counts and for the proportion of seals that remained in the water even under ideal conditions for hauling out.