2 resultados para Textures of Optical Flow

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical networks based on passive star couplers and employing wavelength-division multiplexing (WDhf) have been proposed for deployment in local and metropolitan areas. Amplifiers are required in such networks to compensate for the power losses due to splitting and attenuation. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. The general problem of minimizing the total amplifier count, subject to the device constraints, is a mixed-integer non-linear problem. Previous studies have attacked the amplifier placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. In this paper, we present a method to solve the minimum amplifier- placement problem while avoiding the equally powered- wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required in several small to medium-sized networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.