1 resultado para TRANSPARENT ELECTRODES
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
A wavelength-routed optical network consists of multi-wavelength crossconnect switches (XCSs) which are interconnected by optical fibers. Some (or all) crossconnects, referred to as nodes in this paper, are also attached to access stations where data from several end-users could be multiplexed onto a single wavelength division multiplexed (WDM) channel. An access station provides optical-to-electronic (O/E) conversion and wice wersa to interface the optical network with conventional electronic equipment. The access station, at an intermediate node, may also be used (as in this study) for signal regenerution on a lightpath. A new call is admitted into the network if a lightpath (a set of free wavelengths along a given route from source to destination) can be established between the call’s source and destination stations. Depending on the number of all-optical fragments in a single lightpath, three different approaches may be employed to operate such a network. These approaches are: transparency, opacity, and translucency (to be explained below). Our study concentrates on evaluating the relative merits of these three approaches in a sample network environment.